Benchmark data for: Machine Learning for geospatial vector data classification

  • Van 'T Veer (Contributor)

Dataset

Description

Benchmark data for paper "Deep Learning for Classification Tasks on Geospatial Vector Polygons". Core of the data is in the six numpy zip files. Each numpy zip contains the original WKT geometries as zlib compressed blobs, variable and fixed length geometry vectors, fourier descriptors, and a class dictionary. The zlib compressed wkt strings can be decompressed with import numpy as np import zlib loaded = np.load('archaeology_train_v8.npz') wkts_zipped = loaded['wkts_zlib_compressed'] for wkt_zipped in wkts_zipped: wkt = str.decode(zlib.decompress(wkt_zipped))
Date made available1 Jan 2018
PublisherUnknown Publisher

Cite this