Polishing of Ground Y-TZP Ceramic is Mandatory for Improving the Mechanical Behavior

  • Luis Felipe Guilardi (Universidade Federal de Santa Maria, University of Amsterdam) (Contributor)
  • G.K.R. Pereira (Contributor)
  • L.F. Valandro (Contributor)
  • M.P. Rippe (Contributor)
  • Camila Pauleski Zucuni (Contributor)

Dataset

Description

Abstract It evaluated the effect of aging by Low Temperature Degradation (LTD), executed after post- processing surface treatments (polishing, heat treatment and glazing), on the surface characteristics (micromorphology and roughness) and on the structural stability (phase transformation and mechanical behavior-flexural strength and structural reliability) of a ground yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramic. Discs of Y-TZP (VITA In-Ceram YZ) were manufactured (ISO:6872-2015; 15 mm in diameter and 1.2 ± 0.2 mm in thickness) and randomly assigned into 10 groups according two factors: “aging” in 2 levels (with or without) and “surface treatment” in 5 levels (Ctrl: as-sintered; Gr: grinding with coarse diamond bur; Gr + HT: grinding plus heat treatment; Gr + Pol: grinding plus polishing; Gr + Gl: grinding plus glazing). Roughness (n=30), biaxial flexural test (n=30), phase transformation (n=2), and surface topography (n=2) analyses were performed. Aging led to an intense increase in monoclinic (m) phase content for all the tested conditions, being the as-sintered samples (Ctrl= 65.6%) more susceptible to the t-m phase transformation. Despite of increasing the m-phase content, aging was not detrimental for characteristic strength (except to the grinding condition). There was no significant reduction in the Weibull modulus after surface treatments. Additionally, heat treatment and glazing after grinding led to a decrease in characteristic strength, while polishing presented the highest characteristic strength values. Thus, polishing is mandatory after grinding the Y-TZP ceramic, while performing glazing or heat-treatment alone after grinding lead to the worst mechanical performance.
Date made available1 Jan 2018
Publisherfigshare Academic Research System

Cite this