If you made any changes in Pure these will be visible here soon.

Research Output 2000 2019

  • 32 Article
  • 5 PhD Thesis - Research VU, graduation VU
  • 1 Book editing
  • 1 Report
Filter
Article
2019
Open Access
Data Integration
Bayesian inference
Regression Model
Variable Selection
Regression

Parameter estimation for a discretely observed population process under Markov-modulation

de Gunst, M., Knapik, B., Mandjes, M. & Sollie, B., 26 Jun 2019, In : Computational Statistics and Data Analysis. 140, p. 88-103 16 p.

Research output: Contribution to JournalArticleAcademicpeer-review

Open Access
Parameter estimation
Parameter Estimation
Modulation
Equidistant
Conditional Expectation
2017

Gene network reconstruction using global-local shrinkage priors

Leday, G. G. R., de Gunst, M. C. M., Kpogbezan, G. B., van der Vaart, A. W., van Wieringen, W. N. & van de Wiel, M. A., 2017, In : The Annals of Applied Statistics. 11, 1, p. 41-68

Research output: Contribution to JournalArticleAcademicpeer-review

Gene Networks
Shrinkage
Genes
Regularization Parameter
Gene

Reconstruction of molecular network evolution from cross-sectional omics data

Aflakparast, M., de Gunst, M. C. M. & van Wieringen, W. N., 2017, In : Biometrical Journal. 2017, p. 1-17 17 p.

Research output: Contribution to JournalArticleAcademicpeer-review

Molecular Evolution
Network Evolution
Gaussian Model
Graphical Models
Ridge
2016

Existence and uniqueness of the maximum likelihood estimator for models with a Kronecker product covariance structure

Ros, B. P., Bijma, F., de Munck, J. C. & de Gunst, M. C. M., 2016, In : Journal of Multivariate Analysis. 143, p. 345-361 doi.org/10.1016/j.jmva.2015.05.019.

Research output: Contribution to JournalArticleAcademicpeer-review

Kronecker Product
Covariance Structure
Covariance matrix
Maximum Likelihood Estimator
Maximum likelihood
2015

A three domain covariance framework for EEG/MEG data

Ros, B. P., Bijma, F., de Gunst, M. C. M. & de Munck, J. C., 2015, In : NeuroImage. 119, p. 305-315

Research output: Contribution to JournalArticleAcademicpeer-review

Electroencephalography
Noise
Magnetic Resonance Imaging
Likelihood Functions
2014

A morpho-density approach to estimating neural connectivity

McAssey, M. P., Bijma, F., Tarigan, B., van Pelt, J., van Ooyen, A. & de Gunst, M. C. M., 2014, In : PLoS ONE. 9, 1, p. e86526 11 p., e86526.

Research output: Contribution to JournalArticleAcademicpeer-review

Open Access
Neurons
neurons
Carisoprodol
Uncertainty
uncertainty

Independently Outgrowing Neurons and Geometry- Based Synapse Formation Produce Networks with Realistic Synaptic Connectivity

van Ooyen, A., Carnell, A., De Ridder, S., Tarigan, B., Mansvelder, H. D., Bijma, F., de Gunst, M. C. M. & van Pelt, J., 2014, In : PLoS ONE. 9, 1, p. e85858 14 p., e85858.

Research output: Contribution to JournalArticleAcademicpeer-review

Open Access
synapse
Synapses
Neurons
neurons
Geometry
2012

Comparison of Targeted Maximum Likelihood and Shrinkage Estimators of Parameters in Gene Networks

Geeven, G., van der Laan, M. J. & de Gunst, M. C. M., 2012, In : Statistical Applications in Genetics and Molecular Biology. 11, 5, 27 p.

Research output: Contribution to JournalArticleAcademicpeer-review

Open Access
File
Shrinkage Estimator
Gene Networks
Gene Regulatory Networks
Maximum Likelihood Estimator
Maximum likelihood

Identification of context-specific gene regulatory networks with GEMULA--Gene Expression Modeling Using LAsso

Geeven, G., van Kesteren, R. E., Smit, A. B. & de Gunst, M. C. M., 2012, In : Bioinformatics. 28, 2, p. 214-221 8 p.

Research output: Contribution to JournalArticleAcademicpeer-review

Lasso
Transcription factors
Gene Regulatory Networks
Gene Regulatory Network
Transcription Factor
2011

LLM3D: a log-linear modeling-based method to predict functional gene regulatory interactions from genome-wide expression data

Geeven, G., MacGillavry, H. D., Eggers, R., Sassen, M. M., Verhaagen, J., Smit, A. B., de Gunst, M. C. M. & van Kesteren, R. E., 2011, In : Nucleic Acids Research. 39, 13, p. 5313-5327

Research output: Contribution to JournalArticleAcademicpeer-review

Open Access
File
Regulator Genes
Transcription Factors
Genome
Binding Sites
Yeasts

Novel Candidate Genes Associated with Hippocampal Oscillations

Jansen, R., Timmerman, J., Loos, M., Spijker, S., van Ooijen, A., Brussaard, A. B., Mansvelder, H. D., Smit, A. B., de Gunst, M. C. M. & Linkenkaer-Hansen, K., 2011, In : PLoS ONE. 6, 10, e26586.

Research output: Contribution to JournalArticleAcademicpeer-review

Open Access
File
oscillation
Genes
Quantitative Trait Loci
Genome
genome

Unbiased estimation of Langevin dynamics from time series with application to hippocampal field potentials in vitro

Hindriks, R., Jansen, R., Mone-Bijma, F., Mansvelder, H. D., de Gunst, M. C. M. & van der Vaart, A. W., 2011, In : Physical Review E. 84, 2, 021133.

Research output: Contribution to JournalArticleAcademicpeer-review

Open Access
File
Langevin Dynamics
Unbiased Estimation
Potential Field
Langevin Equation
potential fields
2009

Inbred mouse strains differ in multiple hippocampal activity traits

Jansen, R., Linkenkaer-Hansen, K., Heistek, T. S., Timmerman, A. J., Mansvelder, H. D., Brussaard, A. B., de Gunst, M. C. M. & van Ooyen, A., 2009, In : European Journal of Neuroscience. 30, 6, p. 1092-1100 9 p.

Research output: Contribution to JournalArticleAcademicpeer-review

Inbred Strains Mice
Endophenotypes
Genes
Neurosciences
Synapses
2008

Asymptotic behavior of Bayes estimators for hidden Markov models with application to ion channels

de Gunst, M. C. M. & Shcherbakova, O. V., 2008, In : Mathematical Methods of Statistics. 17, 4, p. 342-356

Research output: Contribution to JournalArticleAcademicpeer-review

Ion Channels
Bayes Estimator
Markov Model
Asymptotic Behavior
Theorem

Growth references for height, weight and body mass index of twins aged 0–2.5 years.

Dommelen, P., de Gunst, M. C. M., van der Vaart, A. W., van Buuren, S. & Boomsma, D. I., 2008, In : Acta Paediatrica. 97, 8, p. 1099-1104

Research output: Contribution to JournalArticleAcademicpeer-review

Open Access
File
Body Mass Index
Weights and Measures
Growth
Gestational Age
Growth Charts
2007

Identification of candidate transcriptional modulators involved in successful regeneration after nerve injury

Stam, F. J., MacGillavry, H. D., Armstrong, N. J., de Gunst, M. C. M., Zhang, Y., van Kesteren, R. E., Smit, A. B. & Verhaagen, J., 2007, In : European Journal of Neuroscience. 25, 12, p. 3629-3637

Research output: Contribution to JournalArticleAcademicpeer-review

Nerve Regeneration
Regeneration
Spinal Ganglia
Neurons
Wounds and Injuries

Identification of candidate transcriptional modulators involved in successful regeneration after nerve injury (vol 25, pg 3629, 2007)

Stam, F. J., Mac Gillavry, H. D., Armstrong, N. J., de Gunst, M. C. M., Zhang, Y., van Kesteren, R. E., Smit, A. B. & Verhaagen, J., 2007, In : European Journal of Neuroscience. 26, 4, p. 1078-1078

Research output: Contribution to JournalArticleAcademicpeer-review

2006

Bayesian modelling and analysis of spatio-temporal neuronal networks

Rigat, F., de Gunst, M. C. M. & van Pelt, J., 2006, In : Bayesian Analysis. 1, 4, p. 733-764 (electronic)

Research output: Contribution to JournalArticleAcademicpeer-review

Open Access
Bayesian Modeling
Neuronal Network
Bayesian Analysis
Neurons
Neuron

Search for haplotype interactions that influence susceptibility to type 1 diabetes, through use of unphased genotype data (vol 73, pg 1385, 2003)

Zhang, J., Liang, F. M., Dassen, W. R. M., Veldman, B. A. J., Doevendans, P. A. & de Gunst, M. C. M., 2006, In : American Journal of Human Genetics. 78, 2, p. 360-360

Research output: Contribution to JournalArticleAcademicpeer-review

2005

Model selection and parameter estimation for ion channel recordings with an application to the K+ outward-rectifier in barley leaf

de Gunst, M. C. M. & Schouten, J. G., 2005, In : Journal of Mathematical Biology. 50, 3, p. 233-256

Research output: Contribution to JournalArticleAcademicpeer-review

Ion Channels
Barley
ion channels
Hordeum
Model Selection

On the power for linkage detection using a test based on scan statistics

Hernandez, S., Siegmund, D. O. & de Gunst, M. C. M., 2005, In : Biostatistics. 6, 2, p. 259-269

Research output: Contribution to JournalArticleAcademicpeer-review

Scan Statistic
Linkage
Chromosome
Sharing
Linkage Analysis
2004

Genetic study of the height and weight process during infancy.

Dommelen, P., de Gunst, M. C. M., van der Vaart, A. W. & Boomsma, D. I., 2004, In : Twin Research. 7, 6, p. 607-616

Research output: Contribution to JournalArticleAcademicpeer-review

Open Access
File
Deceleration
Parturition
Weights and Measures
Growth
Gestational Age

Groeidiagrammen voor lengte, gewicht en 'body mass index' van tweelingen in de peutertijd.

Dommelen, P., de Gunst, M. C. M., van der Vaart, A. W., van Buuren, S. & Boomsma, D. I., 2004, In : Nederlands Tijdschrift voor Geneeskunde. 148, 27, p. 1345-1350

Research output: Contribution to JournalArticleAcademic

Morphine exposure and abstinence define specific stages of gene expression in the rat nucleus accumbens

Spijker, S., Houtzager, S. W. J., de Gunst, M. C. M., de Boer, W. P. H., Schoffelmeer, A. N. M. & Smit, A. B., 2004, In : FASEB Journal. 18, p. 848-850

Research output: Contribution to JournalArticleAcademicpeer-review

2003

Exploring heterogeneity in tumour data using Markov chain Monte Carlo

de Gunst, M. C. M., Dewanji, A. & Luebeck, E. G., 2003, In : Statistics in Medicine. 22, 10, p. 1691-1707

Research output: Contribution to JournalArticleAcademicpeer-review

Markov Chains
Markov Chain Monte Carlo Methods
Markov Chain Monte Carlo
Maximum Likelihood Estimate
Tumor

Model selection for hidden Markov models of ion channel data by reversible jump Markov chain Monte Carlo

de Gunst, M. C. M. & Schouten, B., 2003, In : Bernoulli: A Journal of Mathematical Statistics and Probability. 9, 3, p. 373-393

Research output: Contribution to JournalArticleAcademicpeer-review

Open Access
Reversible Jump Markov Chain Monte Carlo
Ion Channels
Model Selection
Markov Model
Membrane

Search for haplotype interactions that influence susceptibility to type 1 diabetes, through use of unphased genotype data

Zhang, J., Liang, F. M., Dassen, W. R. M., Doevendans, P. A. & de Gunst, M. C. M., 2003, In : American Journal of Human Genetics. 73, 6, p. 1385-1401

Research output: Contribution to JournalArticleAcademicpeer-review

Open Access
Type 1 Diabetes Mellitus
Haplotypes
Genotype
Insulin
Inborn Genetic Diseases

Wiskundige modellering van biologische processen: een uitdaging

de Gunst, M. C. M., 2003, In : Nieuw archief voor de wiskunde. 5/4, 2, p. 122-130 9 p.

Research output: Contribution to JournalArticleAcademic

2001

A stereological method for the analysis of cell counts in tissue sections using 3-dimensional cellular automata

Luebeck, E. G. & de Gunst, M. C. M., 2001, In : Mathematical and Computer Modelling. 33, p. 1387-1400 14 p.

Research output: Contribution to JournalArticleAcademicpeer-review

Open Access

Statistical analysis of ion channel data using hidden Markov models with correlated state-dependent noise and filtering

de Gunst, M. C. M., Künsch, H. R. & Schouten, J. G., 2001, In : Journal of the American Statistical Association. 96, p. 805-815 11 p.

Research output: Contribution to JournalArticleAcademicpeer-review

2000

Quantitative analysis of tumor initiation in rat liver: role of cell replication and cell death (apoptosis).

Grasl-Kraupp, B., Luebeck, E. G., Wagner, A., Low-Baselli, A., de Gunst, M. C. M. & Waldh, T., 2000, In : Carcinogenesis. 21, p. 1411-1421

Research output: Contribution to JournalArticleAcademicpeer-review

Open Access
File