dr. Sander Dahmen

dr.

20142019
If you made any changes in Pure these will be visible here soon.

Personal profile

Ancillary activities

No ancillary activities

Ancillary activities are updated daily

Fingerprint Dive into the research topics where Sander Dahmen is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

Fermat Mathematics
Integer Mathematics
Coprime Mathematics
Wiles Mathematics
Recurrence Mathematics
Modularity Mathematics
Descent Mathematics
Signature Mathematics

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Research Output 2014 2019

  • 4 Article
  • 1 Conference contribution
  • 1 Review article

Formalizing the solution to the cap set problem

Dahmen, S. R., Hölzl, J. & Lewis, R. Y., 2019, 10th International Conference on Interactive Theorem Proving (ITP 2019). Harrison, J., O'Leary, J. & Tolmach, A. (eds.). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, p. 1-19 19 p. 15. (Leibniz International Proceedings in Informatics, LIPIcs; vol. 141).

Research output: Chapter in Book / Report / Conference proceedingConference contributionAcademicpeer-review

Concretes

Andrew Wiles en de Abelprijs

Dahmen, S. R. & Kret, A., Jun 2017, In : Nieuw archief voor de wiskunde. 18, 2, p. 88-98 11 p.

Research output: Contribution to JournalReview articleProfessional

Wiles
Fermat's last theorem
Number theory
Modularity
Elliptic Curves

Generalized Fermat equations: A miscellany

Bennett, M. A., Chen, I., Dahmen, S. R. & Yazdani, S., 2015, In : International Journal of Number Theory. 11, 1, p. 1-28 28 p.

Research output: Contribution to JournalArticleAcademicpeer-review

Fermat
Galois Representations
Integer
Coprime
Appeal

Shifted powers in binary recurrence sequences

Bennett, M. A., Dahmen, S. R., Mignotte, M. & Siksek, S., 2015, In : Mathematical Proceedings of the Cambridge Philosophical Society. 158, 2, p. 305-329 25 p.

Research output: Contribution to JournalArticleAcademicpeer-review

Recurrence
Binary

On the equation $a^3+b^{3n}=c^2$

Bennett, M. A., Chen, I., Dahmen, S. R. & Yazdani, S., 2014, In : Acta Arithmetica. 163, 4, p. 327-343 17 p.

Research output: Contribution to JournalArticleAcademicpeer-review

Coprime
Integer