Abstract
Let p be a prime number. We study certain étale cohomology groups with coefficients associated to a p-adic Artin representation of the Galois group of a number field k. These coefficients are equipped with a modified Tate twist involving a p-adic index. The groups are cofinitely generated, and we determine the additive Euler characteristic. If k is totally real and the representation is even, we study the relation between the behaviour or the value of the p-adic L-function at the point e in its domain, and the cohomology groups with p-adic twist 1-e. In certain cases this gives short proofs of a conjecture by Coates and Lichtenbaum, and the equivariant Tamagawa number conjecture for classical L-functions. For p=2 our results involving p-adic L-functions depend on a conjecture in Iwasawa theory.
Original language | English |
---|---|
Pages (from-to) | 2331-2383 |
Number of pages | 53 |
Journal | Annales de l'Institut Fourier |
Volume | 65 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2015 |