TY - JOUR
T1 - A 9-step theory-and evidence-based postgraduate medical digital education development model
T2 - Empirical development and validation
AU - De Leeuw, Robert
AU - Scheele, Fedde
AU - Walsh, Kieran
AU - Westerman, Michiel
PY - 2019/7/22
Y1 - 2019/7/22
N2 - Background: Postgraduate medical digital education (PGMDE) is increasingly being used and evaluated. However, evaluation has focused mainly on reaching the learning goals and little on the design. Design models for digital education (instructional design models) help educators create a digital education curriculum, but none have been aimed at PGMDE. Studies show the need for efficient, motivating, useful, and satisfactory digital education. Objective: Our objective was (1) to create an empirical instructional design model for PGMDE founded in evidence and theory, with postgraduate medical professionals who work and learn after graduation as the target audience, and (2) to compare our model with existing models used to evaluate and create PGMDE. Methods: Previously we performed an integrative literature review, focus group discussions, and a Delphi procedure to determine which building blocks for such a model would be relevant according to experts and users. This resulted in 37 relevant items. We then used those 37 items and arranged them into chronological steps. After we created the initial 9-step plan, we compared these steps with other models reported in the literature. Results: The final 9 steps were (1) describe who, why, what, (2) select educational strategies, (3) translate to the real world, (4) choose the technology, (5) complete the team, (6) plan the budget, (7) plan the timing and timeline, (8) implement the project, and (9) evaluate continuously. On comparing this 9-step model with other models, we found that no other was as complete, nor were any of the other models aimed at PGMDE. Conclusions: Our 9-step model is the first, to our knowledge, to be based on evidence and theory building blocks aimed at PGMDE. We have described a complete set of evidence-based steps, expanding a 3-domain model (motivate, learn, and apply) to an instructional design model that can help every educator in creating efficient, motivating, useful, and satisfactory PGMDE. Although certain steps are more robust and have a deeper theoretical background in current research (such as education), others (such as budget) have been barely touched upon and should be investigated more thoroughly in order that proper guidelines may also be provided for them.
AB - Background: Postgraduate medical digital education (PGMDE) is increasingly being used and evaluated. However, evaluation has focused mainly on reaching the learning goals and little on the design. Design models for digital education (instructional design models) help educators create a digital education curriculum, but none have been aimed at PGMDE. Studies show the need for efficient, motivating, useful, and satisfactory digital education. Objective: Our objective was (1) to create an empirical instructional design model for PGMDE founded in evidence and theory, with postgraduate medical professionals who work and learn after graduation as the target audience, and (2) to compare our model with existing models used to evaluate and create PGMDE. Methods: Previously we performed an integrative literature review, focus group discussions, and a Delphi procedure to determine which building blocks for such a model would be relevant according to experts and users. This resulted in 37 relevant items. We then used those 37 items and arranged them into chronological steps. After we created the initial 9-step plan, we compared these steps with other models reported in the literature. Results: The final 9 steps were (1) describe who, why, what, (2) select educational strategies, (3) translate to the real world, (4) choose the technology, (5) complete the team, (6) plan the budget, (7) plan the timing and timeline, (8) implement the project, and (9) evaluate continuously. On comparing this 9-step model with other models, we found that no other was as complete, nor were any of the other models aimed at PGMDE. Conclusions: Our 9-step model is the first, to our knowledge, to be based on evidence and theory building blocks aimed at PGMDE. We have described a complete set of evidence-based steps, expanding a 3-domain model (motivate, learn, and apply) to an instructional design model that can help every educator in creating efficient, motivating, useful, and satisfactory PGMDE. Although certain steps are more robust and have a deeper theoretical background in current research (such as education), others (such as budget) have been barely touched upon and should be investigated more thoroughly in order that proper guidelines may also be provided for them.
KW - Design model
KW - Distance education
KW - E-learning
KW - Education, distance
KW - Education, medical
KW - Instructional design
KW - Models, educational
KW - Postgraduate medical e-learning
UR - http://www.scopus.com/inward/record.url?scp=85071649824&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85071649824&partnerID=8YFLogxK
U2 - 10.2196/13004
DO - 10.2196/13004
M3 - Article
AN - SCOPUS:85071649824
SN - 1438-8871
VL - 5
SP - 1
EP - 11
JO - Journal of Medical Internet Research
JF - Journal of Medical Internet Research
IS - 2
M1 - e13004
ER -