A combination of functionally different plant traits provides a means to quantitatively predict a broad range of species assemblages in NW Europe..

J.C. Douma, R. Aerts, J.P.M. Witte, R.M. Bekker, D. Kunzmann, K. Metselaar, P.M. van Bodegom

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Assembly theory predicts that filtering processes will select species by their attributes to build a community. Some filters increase functional similarity among species, while others lead to dissimilarity. Assuming converging processes to be dominant within habitats, we tested in this study whether species assemblages across a wide range of habitats can be distinguished quantitatively by their mean trait compositions. In addition, we investigated how many and which traits are needed to describe the differences between species assemblages best. The approach has been applied on a dataset that included 12 plant traits and 7644 vegetation relevés covering a wide range of habitats in the Netherlands. We demonstrate that due to the dominant role of converging processes 1) the functional composition can explain up to 80% of the floristic differences between species assemblages using seven plant traits, showing that plant trait combinations provide a powerful tool for predicting the occurrence of species assemblages across different habitats; 2) to achieve a high performance, traits should be taken from different strategy components, i.e. traits that are functionally orthogonal, which does not necessarily coincide with low trait-trait correlations; 3) the different strategy components identified in this study correspond to the strategy components of some conventional plant ecological strategy schemes (PESS) - schemes to describe the variation between individual species. However, some PESS merge traits into one strategy component that are shown to be functionally different when predicting species assemblages. If such PESS is used to predict assemblages, this leads to a loss in predictive capacity. Potentially, our new approach is globally applicable to quantify community assembly patterns. However this needs to be tested. © 2011 The Authors.
Original languageEnglish
Pages (from-to)364-373
JournalEcography
Volume35
DOIs
Publication statusPublished - 2012

Fingerprint

habitats
habitat
Europe
Netherlands
individual variation
floristics
vegetation
filter
loss
attribute

Cite this

Douma, J.C. ; Aerts, R. ; Witte, J.P.M. ; Bekker, R.M. ; Kunzmann, D. ; Metselaar, K. ; van Bodegom, P.M. / A combination of functionally different plant traits provides a means to quantitatively predict a broad range of species assemblages in NW Europe.. In: Ecography. 2012 ; Vol. 35. pp. 364-373.
@article{16636da85ca94332900ad509c42c8f73,
title = "A combination of functionally different plant traits provides a means to quantitatively predict a broad range of species assemblages in NW Europe..",
abstract = "Assembly theory predicts that filtering processes will select species by their attributes to build a community. Some filters increase functional similarity among species, while others lead to dissimilarity. Assuming converging processes to be dominant within habitats, we tested in this study whether species assemblages across a wide range of habitats can be distinguished quantitatively by their mean trait compositions. In addition, we investigated how many and which traits are needed to describe the differences between species assemblages best. The approach has been applied on a dataset that included 12 plant traits and 7644 vegetation relev{\'e}s covering a wide range of habitats in the Netherlands. We demonstrate that due to the dominant role of converging processes 1) the functional composition can explain up to 80{\%} of the floristic differences between species assemblages using seven plant traits, showing that plant trait combinations provide a powerful tool for predicting the occurrence of species assemblages across different habitats; 2) to achieve a high performance, traits should be taken from different strategy components, i.e. traits that are functionally orthogonal, which does not necessarily coincide with low trait-trait correlations; 3) the different strategy components identified in this study correspond to the strategy components of some conventional plant ecological strategy schemes (PESS) - schemes to describe the variation between individual species. However, some PESS merge traits into one strategy component that are shown to be functionally different when predicting species assemblages. If such PESS is used to predict assemblages, this leads to a loss in predictive capacity. Potentially, our new approach is globally applicable to quantify community assembly patterns. However this needs to be tested. {\circledC} 2011 The Authors.",
author = "J.C. Douma and R. Aerts and J.P.M. Witte and R.M. Bekker and D. Kunzmann and K. Metselaar and {van Bodegom}, P.M.",
year = "2012",
doi = "10.1111/j.1600-0587.2011.07068.x",
language = "English",
volume = "35",
pages = "364--373",
journal = "Ecography",
issn = "0906-7590",
publisher = "Wiley-Blackwell",

}

A combination of functionally different plant traits provides a means to quantitatively predict a broad range of species assemblages in NW Europe.. / Douma, J.C.; Aerts, R.; Witte, J.P.M.; Bekker, R.M.; Kunzmann, D.; Metselaar, K.; van Bodegom, P.M.

In: Ecography, Vol. 35, 2012, p. 364-373.

Research output: Contribution to JournalArticleAcademicpeer-review

TY - JOUR

T1 - A combination of functionally different plant traits provides a means to quantitatively predict a broad range of species assemblages in NW Europe..

AU - Douma, J.C.

AU - Aerts, R.

AU - Witte, J.P.M.

AU - Bekker, R.M.

AU - Kunzmann, D.

AU - Metselaar, K.

AU - van Bodegom, P.M.

PY - 2012

Y1 - 2012

N2 - Assembly theory predicts that filtering processes will select species by their attributes to build a community. Some filters increase functional similarity among species, while others lead to dissimilarity. Assuming converging processes to be dominant within habitats, we tested in this study whether species assemblages across a wide range of habitats can be distinguished quantitatively by their mean trait compositions. In addition, we investigated how many and which traits are needed to describe the differences between species assemblages best. The approach has been applied on a dataset that included 12 plant traits and 7644 vegetation relevés covering a wide range of habitats in the Netherlands. We demonstrate that due to the dominant role of converging processes 1) the functional composition can explain up to 80% of the floristic differences between species assemblages using seven plant traits, showing that plant trait combinations provide a powerful tool for predicting the occurrence of species assemblages across different habitats; 2) to achieve a high performance, traits should be taken from different strategy components, i.e. traits that are functionally orthogonal, which does not necessarily coincide with low trait-trait correlations; 3) the different strategy components identified in this study correspond to the strategy components of some conventional plant ecological strategy schemes (PESS) - schemes to describe the variation between individual species. However, some PESS merge traits into one strategy component that are shown to be functionally different when predicting species assemblages. If such PESS is used to predict assemblages, this leads to a loss in predictive capacity. Potentially, our new approach is globally applicable to quantify community assembly patterns. However this needs to be tested. © 2011 The Authors.

AB - Assembly theory predicts that filtering processes will select species by their attributes to build a community. Some filters increase functional similarity among species, while others lead to dissimilarity. Assuming converging processes to be dominant within habitats, we tested in this study whether species assemblages across a wide range of habitats can be distinguished quantitatively by their mean trait compositions. In addition, we investigated how many and which traits are needed to describe the differences between species assemblages best. The approach has been applied on a dataset that included 12 plant traits and 7644 vegetation relevés covering a wide range of habitats in the Netherlands. We demonstrate that due to the dominant role of converging processes 1) the functional composition can explain up to 80% of the floristic differences between species assemblages using seven plant traits, showing that plant trait combinations provide a powerful tool for predicting the occurrence of species assemblages across different habitats; 2) to achieve a high performance, traits should be taken from different strategy components, i.e. traits that are functionally orthogonal, which does not necessarily coincide with low trait-trait correlations; 3) the different strategy components identified in this study correspond to the strategy components of some conventional plant ecological strategy schemes (PESS) - schemes to describe the variation between individual species. However, some PESS merge traits into one strategy component that are shown to be functionally different when predicting species assemblages. If such PESS is used to predict assemblages, this leads to a loss in predictive capacity. Potentially, our new approach is globally applicable to quantify community assembly patterns. However this needs to be tested. © 2011 The Authors.

U2 - 10.1111/j.1600-0587.2011.07068.x

DO - 10.1111/j.1600-0587.2011.07068.x

M3 - Article

VL - 35

SP - 364

EP - 373

JO - Ecography

JF - Ecography

SN - 0906-7590

ER -