Abstract
In social interaction between two persons usually a person displays understanding of the other person. This may involve both nonverbal and verbal elements, such as bodily expressing a similar emotion and verbally expressing beliefs about the other person. Such social interaction relates to an underlying neural mechanism based on a mirror neuron system, as known within Social Neuroscience. This mechanism may show different variations over time. This paper addresses this adaptation over time. It presents a computational model capable of learning social responses, based on insights from Social Neuroscience. The presented model may provide a basis for virtual agents in the context of simulation-based training of psychotherapists, gaming, or virtual stories. © 2011 Springer-Verlag.
Original language | English |
---|---|
Pages (from-to) | 9-19 |
Journal | Lecture Notes in Computer Science |
Volume | 7062 |
DOIs | |
Publication status | Published - 2011 |
Event | 18th International Conference on Neural Information Processing, ICONIP'11 - Berlin-Heidelberg Duration: 1 Jan 2011 → 1 Jan 2011 |
Bibliographical note
Proceedings title: Proceedings of the 18th International Conference on Neural Information Processing, ICONIP'11, Part I.Publisher: Springer Verlag
Place of publication: Berlin-Heidelberg
Editors: B.L. Lu et al.