A faster and more accurate heuristic for cyclic edit distance computation

Lorraine A.K. Ayad, Carl Barton, Solon P. Pissis*

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review


Sequence comparison is the core computation of many applications involving textual representations of data. Edit distance is the most widely used measure to quantify the similarity of two sequences. Edit distance can be defined as the minimal total cost of a sequence of edit operations to transform one sequence into the other; for a sequence x of length m and a sequence y of length n, it can be computed in time O(mn). In many applications, it is common to consider sequences with circular structure: for instance, the orientation of two images or the leftmost position of two linearised circular DNA sequences may be irrelevant. To this end, an algorithm to compute the cyclic edit distance in time O(mnlogm) was proposed (Maes, 2003 [18]) and several heuristics have been proposed to speed up this computation. Recently, a new algorithm based on q-grams was proposed for circular sequence comparison (Grossi et al., 2016 [13]). We extend this algorithm for cyclic edit distance computation and show that this new heuristic is faster and more accurate than the state of the art. The aim of this letter is to give visibility to this idea in the pattern recognition community.

Original languageEnglish
Pages (from-to)81-87
Number of pages7
JournalPattern Recognition Letters
Publication statusPublished - 1 Mar 2017
Externally publishedYes


  • Chain code
  • Circular sequences
  • Cyclic edit distance
  • Cyclic strings
  • q-gram distance


Dive into the research topics of 'A faster and more accurate heuristic for cyclic edit distance computation'. Together they form a unique fingerprint.

Cite this