A fully traits-based approach to modeling global vergetation distribution

P.M. van Bodegom, J.C. Douma, L.M. Verheijen

    Research output: Contribution to JournalArticleAcademicpeer-review

    Abstract

    Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs.
    Original languageEnglish
    Pages (from-to)13733-13738
    JournalProceedings of the National Academy of Sciences of the United States of America
    Volume111
    Issue number38
    DOIs
    Publication statusPublished - 2014

    Fingerprint

    Dive into the research topics of 'A fully traits-based approach to modeling global vergetation distribution'. Together they form a unique fingerprint.

    Cite this