Abstract
Whether hedonism or eudaimonia are two distinguishable forms of well-being is a topic of ongoing debate. To shed light on the relation between the two, large-scale available molecular genetic data were leveraged to gain more insight into the genetic architecture of the overlap between hedonic and eudaimonic well-being. Hence, we conducted the first genome-wide association studies (GWAS) of eudaimonic well-being (N = ~108 K) and linked it to a GWAS of hedonic well-being (N = ~222 K). We identified the first two genome-wide significant independent loci for eudaimonic well-being and six independent loci for hedonic well-being. Joint analyses revealed a moderate phenotypic correlation (r = 0.53) and a high genetic correlation (rg = 0.78) between eudaimonic and hedonic well-being. This indicates that the genetic etiology of hedonic and eudaimonic well-being is substantially shared, with divergent (environmental) factors contributing to their phenotypic divergence. Loci regulating expression showed significant enrichment in the brain cortex, brain cerebellum, frontal cortex, as well as the cerebellar hemisphere for eudaimonic well-being. No significant enrichment for hedonic well-being is observed, although brain tissues were top ranked. Genetic correlations patterns with a range of positive and negative related phenotypes were largely similar for hedonic –and eudaimonic well-being. Our results reveal a large overlap between the genes that influence hedonism and the genes that influence eudaimonia.
Original language | English |
---|---|
Article number | 14610 |
Pages (from-to) | 1-10 |
Number of pages | 10 |
Journal | Scientific Reports |
Volume | 8 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2 Oct 2018 |
Funding
M. Bartels and B.M.L Baselmans are financially supported by the University Research Chair position of M. Bartels. This work is supported by an ERC consolidation grant (well-being 771057 PI Bartels). This research has been conducted using UK Biobank resource (application number 25472 (PI Bartels). We would like to thank the participants and researches who collected and contributed to the data. We would like to thank Michel Nivard, Matthijs van der Zee, and Hill Fung Ip for their contributions in processing the UK Biobank genetic data. Computational facilities were supplied by NWO via the grant: “Population scale genetic analysis” 2018/ EW/00408559.
Funders | Funder number |
---|---|
ERC consolidation | |
National Institutes of Health | AI116348-01 |
Horizon 2020 Framework Programme | 771057 |