A greenhouse gas indicator for bioenergy: Some theoretical issues with practical implications

Jeroen B. Guinée, Reinout Heijungs, Ester Van Der Voet

    Research output: Contribution to JournalReview articleAcademicpeer-review


    Background, aim, and scope: The expectations with respect to biomass as a resource for sustainable energy are sky-high. Many industrialized countries have adopted ambitious policy targets and have introduced financial measures to stimulate the production or use of bioenergy. Meanwhile, the side-effects and associated risks have been pointed out as well. To be able to make a well-informed decision, the Dutch government has expressed the intention to include sustainability criteria into relevant policy instruments. Main features: Among other criteria, it has been proposed to calculate a so-called life-cycle-based greenhouse gas (GHG) indicator, which expresses the reduction of GHG emissions of a bio-based fuel chain in comparison with a fossil-based fuel chain. Life-cycle-based biofuel studies persistently have problems with the handling of biogenic carbon balances and with the treatment of coproducts and recycling. In life-cycle assessments (LCAs) of agricultural products, a distinction between "negative" and "positive" emissions may be relevant. In particular, carbon dioxide, as a naturally occurring compound or an anthropogenic emission, takes part in the so-called geochemical carbon cycle. The most appropriate way to treat carbon cycles is to view them as genuine cycles and, thus, at the systems level, subtract the fixation of CO 2 during tree growth from the CO2 emitted during waste treatment of discarded wood and to quantify the CH4 emitted. In solving the multifunctionality problem, two steps may be distinguished. The first concerns the modeling of the product system studied in the inventory analysis. In this step, system boundaries are set, processes are described, and process flows are quantified. Multifunctionality problems can be identified and the model of the product system is drafted. The second step concerns solving the remaining multifunctionality problems. For this step, various ways of solving the multifunctionality problem have been proposed and applied, on the basis of mass, energy, economic value, avoided burdens, etc. As the GHG indicator may constitute the basis for granting subsidies to stimulate the use of bioenergy, for example, and as the method for the GHG indicator provides no guidelines on the handling of biogenic CO2 and guidelines for solving multifunctionality problems such as with coproducts and recycling that leave room for various choices, this study analyzed whether the current GHG indicator provides results that are a robust basis for granting such subsidies. Results: For the robustness check, a hypothetical case study on wood residue-based electricity was set up in order to illustrate what the effects of different solutions and choices for the two steps mentioned may be. The case dealt with the production of wood pellets (residues of the wood industry) that are cofired in a coal-fired power plant. The functional unit is 1 kWh of electricity. Three possibilities for the places of the multifunctional process, two possibilities for whether or not to include biogenic CO2, and four possibilities for the allocation method were distinguished and calculated. Varying the options for these three choices in this way appears to have a huge effect on the GHG indicator, while no clear pattern seems to emerge. Discussion: The results found for this hypothetical case indicate that there are several methodological choices that have not sufficiently been fixed by the presently available standards and guidelines for LCA and GHG assessment of bioenergy systems. In particular, we have focused on issues related to biogenic CO2 and allocation, two issues that play a prominent role in the assessment of bioenergy systems. Moreover, we have demonstrated with a small hypothetical case study that these are not only issues that might theoretically show up, but that they play a decisive role in practice. Conclusions: The present (Dutch) GHG indicator lacks robustness, which will raise problems for providing a sound basis for granting subsidies. This situation can, however, be improved by reducing the freedom of choices for the handling of biogenic CO2 and allocation to an absolute minimum. Recommendations and perspectives: Even then, however, differences could appear due to different definitions, data sources, and method interpretations. It thus appears that two kinds of guidance are needed: (1) the LCA methodology itself should be expanded with guidelines for those issues that follow from science, logic, or consensus; (2) in the policy regulation that demands LCA to be the basis of the decision, additional guidelines should be specified that perhaps do not (yet) have the status of being scientifically proven or generally agreed upon, but that serve as a set of temporary extra guidelines.

    Original languageEnglish
    Pages (from-to)328-339
    Number of pages12
    JournalInternational Journal of Life Cycle Assessment
    Issue number4
    Publication statusPublished - Jun 2009


    • Allocation
    • Bioelectricity
    • Biogenic CO
    • Carbon footprint
    • Greenhouse gas indicator
    • LCA
    • Life cycle assessment


    Dive into the research topics of 'A greenhouse gas indicator for bioenergy: Some theoretical issues with practical implications'. Together they form a unique fingerprint.

    Cite this