Abstract
Alcohol use disorder is characterized by a high risk of relapse during periods of abstinence. Relapse is often triggered by retrieval of persistent alcohol memories upon exposure to alcohol-associated environmental cues, but little is known about the neuronal circuitry that supports the long-term storage of alcohol cue associations. We found that a small ensemble of neurons in the medial prefrontal cortex (mPFC) of mice was activated during cue-paired alcohol self-administration (SA) and that selective suppression of these neurons 1 month later attenuated cue-induced relapse to alcohol seeking. Inhibition of alcohol seeking was specific to these neurons as suppression of a non–alcohol-related or sucrose SA–activated mPFC ensemble did not affect relapse behavior. Hence, the mPFC neuronal ensemble activated during cue-paired alcohol consumption functions as a lasting memory trace that mediates cue-evoked relapse long after cessation of alcohol intake, thereby providing a potential target for treatment of alcohol relapse vulnerability.
Original language | English |
---|---|
Article number | eaax7060 |
Pages (from-to) | 1-13 |
Number of pages | 13 |
Journal | Science advances |
Volume | 6 |
Issue number | 19 |
DOIs | |
Publication status | Published - 6 May 2020 |