TY - JOUR
T1 - A protein tertiary structure mimetic modulator of the Hippo signalling pathway
AU - Adihou, Hélène
AU - Gopalakrishnan, Ranganath
AU - Förster, Tim
AU - Guéret, Stéphanie M.
AU - Gasper, Raphael
AU - Geschwindner, Stefan
AU - Carrillo García, Carmen
AU - Karatas, Hacer
AU - Pobbati, Ajaybabu V.
AU - Vazquez‐Chantada, Mercedes
AU - Davey, Paul
AU - Wassvik, Carola M.
AU - Pang, Jeremy Kah Sheng
AU - Soh, Boon Seng
AU - Hong, Wanjin
AU - Chiarparin, Elisabetta
AU - Schade, Dennis
AU - Plowright, Alleyn T.
AU - Valeur, Eric
AU - Lemurell, Malin
AU - Grossmann, Tom N.
AU - Waldmann, Herbert
PY - 2020/11/1
Y1 - 2020/11/1
N2 - Transcription factors are key protein effectors in the regulation of gene transcription, and in many cases their activity is regulated via a complex network of protein–protein interactions (PPI). The chemical modulation of transcription factor activity is a long-standing goal in drug discovery but hampered by the difficulties associated with the targeting of PPIs, in particular when extended and flat protein interfaces are involved. Peptidomimetics have been applied to inhibit PPIs, however with variable success, as for certain interfaces the mimicry of a single secondary structure element is insufficient to obtain high binding affinities. Here, we describe the design and characterization of a stabilized protein tertiary structure that acts as an inhibitor of the interaction between the transcription factor TEAD and its co-repressor VGL4, both playing a central role in the Hippo signalling pathway. Modification of the inhibitor with a cell-penetrating entity yielded a cell-permeable proteomimetic that activates cell proliferation via regulation of the Hippo pathway, highlighting the potential of protein tertiary structure mimetics as an emerging class of PPI modulators.
AB - Transcription factors are key protein effectors in the regulation of gene transcription, and in many cases their activity is regulated via a complex network of protein–protein interactions (PPI). The chemical modulation of transcription factor activity is a long-standing goal in drug discovery but hampered by the difficulties associated with the targeting of PPIs, in particular when extended and flat protein interfaces are involved. Peptidomimetics have been applied to inhibit PPIs, however with variable success, as for certain interfaces the mimicry of a single secondary structure element is insufficient to obtain high binding affinities. Here, we describe the design and characterization of a stabilized protein tertiary structure that acts as an inhibitor of the interaction between the transcription factor TEAD and its co-repressor VGL4, both playing a central role in the Hippo signalling pathway. Modification of the inhibitor with a cell-penetrating entity yielded a cell-permeable proteomimetic that activates cell proliferation via regulation of the Hippo pathway, highlighting the potential of protein tertiary structure mimetics as an emerging class of PPI modulators.
UR - http://www.scopus.com/inward/record.url?scp=85094139572&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85094139572&partnerID=8YFLogxK
U2 - 10.1038/s41467-020-19224-8
DO - 10.1038/s41467-020-19224-8
M3 - Article
AN - SCOPUS:85094139572
VL - 11
JO - Nature Communications
JF - Nature Communications
SN - 2041-1723
IS - 1
M1 - 5425
ER -