TY - JOUR
T1 - A structural investigation of the central chlorophyll a binding sites in the minor photosystem II antenna protein, Lhcb4
AU - Pascal, Andy
AU - Caffarri, Stefano
AU - Croce, Roberta
AU - Sandonà, Dorianna
AU - Bassi, Roberto
AU - Robert, Bruno
PY - 2002/2/19
Y1 - 2002/2/19
N2 - Mutant proteins from light-harvesting complexes of higher plants may be obtained by expressing modified apoproteins in Escherichia coli, and reconstituting them in the presence of chlorophyll and carotenoid cofactors. This method has allowed, in particular, the engineering of mutant LHCs in which each of the residues coordinating the central Mg atoms of the chlorophylls was replaced by noncoordinating amino acids [Bassi, R., Croce, R., Cugini, D., and Sandonà, D. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 10056-10061]. The availability of these mutants is of particular importance for determining the precise position of absorption bands for the different chlorophyll molecules, as well as the sequence of energy transfer events that occur within LHC complexes, provided that the structural impact of each mutation is precisely evaluated. Using resonance Raman spectroscopy, we have characterized the pigment-protein interactions in the minor photosystem II antenna protein, Lhcb4 (CP29), in which each of three of the four central chlorophyll a molecules has been removed by such mutations. By comparing the spectra of these mutants with those of the wild-type protein, the state of interaction of the carbonyl group, the coordination state of the central magnesium ion, and the dielectric constant (polarity) of the immediate environment in the binding pocket of the chlorophyll a molecule were defined for each cofactor binding site. In addition, the structural impact of the absence of one chlorophyll a molecule and the quality of protein folding were evaluated for each of these mutated polypeptides.
AB - Mutant proteins from light-harvesting complexes of higher plants may be obtained by expressing modified apoproteins in Escherichia coli, and reconstituting them in the presence of chlorophyll and carotenoid cofactors. This method has allowed, in particular, the engineering of mutant LHCs in which each of the residues coordinating the central Mg atoms of the chlorophylls was replaced by noncoordinating amino acids [Bassi, R., Croce, R., Cugini, D., and Sandonà, D. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 10056-10061]. The availability of these mutants is of particular importance for determining the precise position of absorption bands for the different chlorophyll molecules, as well as the sequence of energy transfer events that occur within LHC complexes, provided that the structural impact of each mutation is precisely evaluated. Using resonance Raman spectroscopy, we have characterized the pigment-protein interactions in the minor photosystem II antenna protein, Lhcb4 (CP29), in which each of three of the four central chlorophyll a molecules has been removed by such mutations. By comparing the spectra of these mutants with those of the wild-type protein, the state of interaction of the carbonyl group, the coordination state of the central magnesium ion, and the dielectric constant (polarity) of the immediate environment in the binding pocket of the chlorophyll a molecule were defined for each cofactor binding site. In addition, the structural impact of the absence of one chlorophyll a molecule and the quality of protein folding were evaluated for each of these mutated polypeptides.
UR - http://www.scopus.com/inward/record.url?scp=0037133142&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037133142&partnerID=8YFLogxK
U2 - 10.1021/bi015639+
DO - 10.1021/bi015639+
M3 - Article
C2 - 11841223
AN - SCOPUS:0037133142
SN - 0006-2960
VL - 41
SP - 2305
EP - 2310
JO - Biochemistry
JF - Biochemistry
IS - 7
ER -