A survey of large-scale reasoning on the Web of data

Grigoris Antoniou, Sotiris Batsakis, Raghava Mutharaju, Jeff Z. Pan, Guilin Qi, Ilias Tachmazidis, Jacopo Urbani, Zhangquan Zhou

Research output: Contribution to JournalReview articleAcademicpeer-review

21 Downloads (Pure)

Abstract

As more and more data is being generated by sensor networks, social media and organizations, the Webinterlinking this wealth of information becomes more complex. This is particularly true for the so-calledWeb of Data, in which data is semantically enriched and interlinked using ontologies. In this large anduncoordinated environment, reasoning can be used to check the consistency of the data and of asso-ciated ontologies, or to infer logical consequences which, in turn, can be used to obtain new insightsfrom the data. However, reasoning approaches need to be scalable in order to enable reasoning over theentire Web of Data. To address this problem, several high-performance reasoning systems, whichmainly implement distributed or parallel algorithms, have been proposed in the last few years. Thesesystems differ significantly; for instance in terms of reasoning expressivity, computational propertiessuch as completeness, or reasoning objectives. In order to provide afirst complete overview of thefield,this paper reports a systematic review of such scalable reasoning approaches over various ontologicallanguages, reporting details about the methods and over the conducted experiments. We highlight theshortcomings of these approaches and discuss some of the open problems related to performing scalablereasoning.
Original languageEnglish
Article numbere21
Pages (from-to)1-43
Number of pages43
JournalKnowledge Engineering Review
Volume33
DOIs
Publication statusPublished - 3 Dec 2018

Cite this