@inbook{398627c09279453d8b871938319e7e69,
title = "A Wavelet-ANFIS Hybrid Model for Groundwater Level Forecasting for Different Prediction Periods",
abstract = "Artificial neural network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) have an extensive range of applications in water resources management. Wavelet transformation as a preprocessing approach can improve the ability of a forecasting model by capturing useful information on various resolution levels. The objective of this research is to compare several data-driven models for forecasting groundwater level for different prediction periods. In this study, a number of model structures for Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), Wavelet-ANN and Wavelet- ANFIS models have been compared to evaluate their performances to forecast groundwater level with 1, 2, 3 and 4 months ahead under two case studies in two sub-basins. It was demonstrated that wavelet transform can improve accuracy of groundwater level forecasting. It has been also shown that the forecasts made byWavelet-ANFIS models are more accurate than those by ANN, ANFIS and Wavelet-ANN models. This study confirms that the optimum number of neurons in the hidden layer cannot be always determined by using a specific formula but trial-and-error method. The decomposition level in wavelet transform should be determined according to the periodicity and seasonality of data series. The prediction of these models is more accurate for 1 and 2 months ahead (for example RMSE=0.12, E=0.93 and R2=0.99 for wavelet-ANFIS model for 1 month ahead) than for 3 and 4 months ahead (for example RMSE=2.07, E=0.63 and R2=0.91 for wavelet- ANFIS model for 4 months ahead).",
keywords = "Forecasting, Groundwater level, Mashhad plain, Wavelet-ANFIS, Wavelet-ANN",
author = "Vahid Moosavi and Mehdi Vafakhah and Bagher Shirmohammadi and Negin Behnia",
year = "2013",
doi = "10.1007/s11269-012-0239-2",
language = "English",
isbn = "1126901202",
series = "Water Resources Management",
pages = "1301--1321",
booktitle = "Water Resources Management",
}