Ae2(a,b)-Deficient mice exhibit osteopetrosis of long bones but not of calvaria

I.D.C. Jansen, P. Mardones, F. Lecanda, T.J. de Vries, S. Recalde, K.A. Hoeben, T. Schoenmaker, J.H. Ravesloot, M.M.G.J. van Borren, T.M. van Eijden, A.L.J.J. Bronckers, S. Kellokumpu, J.F. Medina, V. Everts, R.P.J. Oude Elferink

    Research output: Contribution to JournalArticleAcademicpeer-review


    Extracellular acidification by osteoclasts is essential to bone resorption. During proton pumping, intracellular pH (pHi) is thought to be kept at a near-neutral level by chloride/bicarbonate exchange. Here we show that the Na+-independent chloride/bicarbonate anion exchanger 2 (Ae2) is relevant for this process in the osteoclasts from the long bones of Ae2a,b-/-mice (deficient in the main isoforms Ae2a, Ae2b1, and Ae2b2). Although the long bones of these mice had normal numbers of multinucleated osteoclasts, these cells lacked a ruffled border and displayed impaired bone resorption activity, resulting in an osteopetrotic phenotype of long bones. Moreover, in vitro osteoclastogenesis assays using long-bone marrow cells from Ae2a,b-/-mice suggested a role for Ae2 in osteoclast formation, as fusion of preosteoclasts for the generation of active multinucleated osteoclasts was found to be slightly delayed. In contrast to the abnormalities observed in the long bones, the skull of Ae2a,b-/-mice showed no alterations, indicating that calvaria osteoclasts may display normal resorptive activity. Microfluorimetric analysis of osteoclasts from normal mice showed that, in addition to Ae2 activity, calvaria osteoclasts—but not long-bone osteoclasts—possess a sodium-dependent bicarbonate transporting activity. Possibly, this might compensate for the absence of Ae2 in calvaria osteoclasts of Ae2a,b-/-mice.—Jansen, I. D. C., Mardones, P., Lecanda, F., de Vries, T. J., Recalde, S., Hoeben, K. A., Schoenmaker, T., Ravesloot, J.-H., van Borren, M. M. G. J., van Eijden, T. M., Bronckers, A. L. J. J., Kellokumpu, S., Medina, J. F., Everts, V., Oude Elferink, R. P. J. Ae2a,b-deficient mice exhibit osteopetrosis of long bones but not of calvaria.
    Original languageUndefined/Unknown
    Pages (from-to)3470-3481
    JournalThe FASEB Journal
    Issue number10
    Publication statusPublished - 2009

    Cite this