Agricultural intensification increases deforestation fire activity in Amazonia

D.C. Morton, R.S. de Fries, J.T Randerson, L. Giglio, W. Schroeder, G.R. van der Werf

    Research output: Contribution to JournalArticleAcademicpeer-review


    Fire-driven deforestation is the major source of carbon emissions from Amazonia. Recent expansion of mechanized agriculture in forested regions of Amazonia has increased the average size of deforested areas, but related changes in fire dynamics remain poorly characterized. We estimated the contribution of fires from the deforestation process to total fire activity based on the local frequency of active fire detections from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. High-confidence fire detections at the same ground location on 2 or more days per year are most common in areas of active deforestation, where trunks, branches, and stumps can be piled and burned many times before woody fuels are depleted. Across Amazonia, high-frequency fires typical of deforestation accounted for more than 40% of the MODIS fire detections during 2003-2007. Active deforestation frontiers in Bolivia and the Brazilian states of Mato Grosso, Pará, and Rondônia contributed 84% of these high-frequency fires during this period. Among deforested areas, the frequency and timing of fire activity vary according to postclearing land use. Fire usage for expansion of mechanized crop production in Mato Grosso is more intense and more evenly distributed throughout the dry season than forest clearing for cattle ranching (4.6 vs. 1.7 fire days per deforested area, respectively), even for clearings >200 ha in size. Fires for deforestation may continue for several years, increasing the combustion completeness of cropland deforestation to nearly 100% and pasture deforestation to 50-90% over 1-3-year timescales typical of forest conversion. Our results demonstrate that there is no uniform relation between satellite-based fire detections and carbon emissions. Improved understanding of deforestation carbon losses in Amazonia will require models that capture interannual variation in the deforested area that contributes to fire activity and variable combustion completeness of individual clearings as a function of fire frequency or other evidence of postclearing land use. © 2008 The Authors Journal compilation © 2008 Blackwell Publishing.
    Original languageEnglish
    Pages (from-to)2262-2275
    JournalGlobal Change Biology
    Publication statusPublished - 2008


    Dive into the research topics of 'Agricultural intensification increases deforestation fire activity in Amazonia'. Together they form a unique fingerprint.

    Cite this