alfa-Amylase as a reliable and convenient measure of sympathetic activity: don’t start salivating just yet!

JA Bosch, J.W. Veerman, E.J.C. de Geus, J. Proctor

Research output: Contribution to JournalArticleAcademicpeer-review


Recent years have seen a growing interest in salivary α-amylase (sAA) as a non-invasive marker for sympathetic nervous system (SNS) activity. Saliva offers many advantages as a biomarker fluid and sAA is one of its most plentiful components. sAA is a digestive enzyme that breaks down starch, which provides a simple means of quantification by measuring its enzymatic activity. This commentary will address a number of common misconceptions and methodological issues that surround the use of sAA as a marker of SNS activity and limit its utility in biobehavioral research.The usefulness of sAA as an SNS marker is undermined by the fact that the parasympathetic nerves also play a significant role in sAA release. Local parasympathetic nerves regulate sAA activity via: (1) α-amylase release from glands that are solely or mainly parasympathetically innervated; (2) via synergistic sympathetic-parasympathetic effects on protein secretion (known as 'augmented secretion'); and (3) via effects on salivary flow rate. Regarding methodology, we discuss why it is problematic: (1) to ignore the contribution of salivary flow rate; (2) to use absorbent materials for saliva collection, and; (3) to stimulate saliva secretion by chewing. While these methodological problems can be addressed by using standardized and timed collection of unstimulated saliva, the physiological regulation of sAA secretion presents less resolvable issues. We conclude that at present there is insufficient support for the use and interpretation of sAA activity as a valid and reliable measure of SNS activity. © 2011 Elsevier Ltd.
Original languageEnglish
Pages (from-to)449-453
Issue number4
Publication statusPublished - 2011


Dive into the research topics of 'alfa-Amylase as a reliable and convenient measure of sympathetic activity: don’t start salivating just yet!'. Together they form a unique fingerprint.

Cite this