TY - JOUR
T1 - Algebraic stability of zigzag persistence modules
AU - Botnan, M.B.
AU - Lesnick, Michael
PY - 2018/10/18
Y1 - 2018/10/18
N2 - The stability theorem for persistent homology is a central result in topological data analysis. While the original formulation of the result concerns the persistence barcodes of ℝ–valued functions, the result was later cast in a more general algebraic form, in the language of persistence modules and interleavings. We establish an analogue of this algebraic stability theorem for zigzag persistence modules. To do so, we functorially extend each zigzag persistence module to a two-dimensional persistence module, and establish an algebraic stability theorem for these extensions. One part of our argument yields a stability result for free two-dimensional persistence modules. As an application of our main theorem, we strengthen a result of Bauer et al on the stability of the persistent homology of Reeb graphs. Our main result also yields an alternative proof of the stability theorem for level set persistent homology of Carlsson et al.
AB - The stability theorem for persistent homology is a central result in topological data analysis. While the original formulation of the result concerns the persistence barcodes of ℝ–valued functions, the result was later cast in a more general algebraic form, in the language of persistence modules and interleavings. We establish an analogue of this algebraic stability theorem for zigzag persistence modules. To do so, we functorially extend each zigzag persistence module to a two-dimensional persistence module, and establish an algebraic stability theorem for these extensions. One part of our argument yields a stability result for free two-dimensional persistence modules. As an application of our main theorem, we strengthen a result of Bauer et al on the stability of the persistent homology of Reeb graphs. Our main result also yields an alternative proof of the stability theorem for level set persistent homology of Carlsson et al.
UR - http://www.scopus.com/inward/record.url?scp=85055640609&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85055640609&partnerID=8YFLogxK
U2 - 10.2140/agt.2018.18.3133
DO - 10.2140/agt.2018.18.3133
M3 - Article
AN - SCOPUS:85055640609
SN - 1472-2747
VL - 18
SP - 3133
EP - 3204
JO - Algebraic and Geometric Topology
JF - Algebraic and Geometric Topology
IS - 6
ER -