Abstract
Background: Microbial bioengineering has the potential to become a key contributor to the future development of human society by providing sustainable, novel, and cost-effective production pipelines. However, the sustained productivity of genetically engineered strains is often a challenge, as spontaneous non-producing mutants tend to grow faster and take over the population. Novel strategies to prevent this issue of strain instability are urgently needed. Results: In this study, we propose a novel strategy applicable to all microbial production systems for which a genome-scale metabolic model is available that aligns the production of native metabolites to the formation of biomass. Based on well-established constraint-based analysis techniques such as OptKnock and FVA, we developed an in silico pipeline - FRUITS - that specifically 'Finds Reactions Usable in Tapping Side-products'. It analyses a metabolic network to identify compounds produced in anabolism that are suitable to be coupled to growth by deletion of their re-utilization pathway(s), and computes their respective biomass and product formation rates. When applied to Synechocystis sp. PCC6803, a model cyanobacterium explored for sustainable bioproduction, a total of nine target metabolites were identified. We tested our approach for one of these compounds, acetate, which is used in a wide range of industrial applications. The model-guided engineered strain shows an obligatory coupling between acetate production and photoautotrophic growth as predicted. Furthermore, the stability of acetate productivity in this strain was confirmed by performing prolonged turbidostat cultivations. Conclusions: This work demonstrates a novel approach to stabilize the production of target compounds in cyanobacteria that culminated in the first report of a photoautotrophic growth-coupled cell factory. The method developed is generic and can easily be extended to any other modeled microbial production system.
Original language | English |
---|---|
Article number | 38 |
Pages (from-to) | 1-13 |
Number of pages | 13 |
Journal | Biotechnology for Biofuels |
Volume | 11 |
Issue number | 38 |
DOIs | |
Publication status | Published - 13 Feb 2018 |
Funding
FBS first conceived this study along with KJH. WD carried out all strain engineering assisted by DL, and all cultivations supported by JAJ and HPH. CvB was responsible for the implementation of the computational tools and development of the algorithm supervised by BGO and FBS, respectively. WD and FBS wrote the first draft of the manuscript. All authors read and approved the final manuscript.
Funders | Funder number |
---|---|
Dutch Ministry of Economic Affairs, Agriculture, and Innovation | |
Netherlands Organization for Scientific Research | |
Nederlandse Organisatie voor Wetenschappelijk Onderzoek | 863.11.019, 733 000 005 |
China Scholarship Council | |
BE-Basic Foundation | F08.005.001 |
Keywords
- Acetate production
- Cyanobacteria
- Growth coupled
- Metabolic modeling
- Strain stability