TY - JOUR
T1 - Altered interaction and distribution of glycosaminoglycans and growth factors in mucopolysaccharidosis type I bone disease
AU - Kingma, S.D.K.
AU - Wagemans, T.
AU - Ijlst, L.
AU - Bronckers, A.L.J.J.
AU - van Kuppevelt, T.H.
AU - Everts, V.
AU - Wijburg, F.A.
AU - van Vlies, N.
PY - 2016
Y1 - 2016
N2 - The mucopolysaccharidoses (MPSs) comprise a group of lysosomal storage disorders characterized by deficient degradation and subsequent accumulation of glycosaminoglycans (GAGs). Progressive bone and joint disease are a major cause of morbidity, and current therapeutic strategies have limited effect on these symptoms. By elucidating pathophysiological mechanisms underlying bone disease, new therapeutic targets may be identified. Longitudinal growth is regulated by interaction between GAGs and growth factors. Because GAGs accumulate in the MPSs, we hypothesized that altered interaction between growth factors and GAGs contribute to the pathogenesis of MPS bone disease. In this study, binding between GAGs from MPS I chondrocytes and fibroblast growth factor 2 (FGF2) was not significantly different from binding of FGF2 to GAGs from control chondrocytes. FGF2 signaling, however, was increased in MPS I chondrocytes after incubation with FGF2, as compared to control chondrocytes. Using bone cultures, we demonstrated decreased growth of WT mouse bones after incubation with FGF2, but no effect on MPS I bone growth. However, MPS I bones showed decreased growth in the presence of GAGs from MPS I chondrocytes. Finally, we demonstrate altered GAG distribution in MPS I chondrocytes, and altered GAG, FGF2 and Indian hedgehog distribution in growth plates from MPS I mice. In summary, our results suggest that altered interaction and distribution of growth factors and accumulated GAGs may contribute to the pathogenesis of MPS bone disease. In the future, targeting growth factor regulation or the interaction between in growth factors and GAGs might be a promising therapeutic strategy for MPS bone disease.
AB - The mucopolysaccharidoses (MPSs) comprise a group of lysosomal storage disorders characterized by deficient degradation and subsequent accumulation of glycosaminoglycans (GAGs). Progressive bone and joint disease are a major cause of morbidity, and current therapeutic strategies have limited effect on these symptoms. By elucidating pathophysiological mechanisms underlying bone disease, new therapeutic targets may be identified. Longitudinal growth is regulated by interaction between GAGs and growth factors. Because GAGs accumulate in the MPSs, we hypothesized that altered interaction between growth factors and GAGs contribute to the pathogenesis of MPS bone disease. In this study, binding between GAGs from MPS I chondrocytes and fibroblast growth factor 2 (FGF2) was not significantly different from binding of FGF2 to GAGs from control chondrocytes. FGF2 signaling, however, was increased in MPS I chondrocytes after incubation with FGF2, as compared to control chondrocytes. Using bone cultures, we demonstrated decreased growth of WT mouse bones after incubation with FGF2, but no effect on MPS I bone growth. However, MPS I bones showed decreased growth in the presence of GAGs from MPS I chondrocytes. Finally, we demonstrate altered GAG distribution in MPS I chondrocytes, and altered GAG, FGF2 and Indian hedgehog distribution in growth plates from MPS I mice. In summary, our results suggest that altered interaction and distribution of growth factors and accumulated GAGs may contribute to the pathogenesis of MPS bone disease. In the future, targeting growth factor regulation or the interaction between in growth factors and GAGs might be a promising therapeutic strategy for MPS bone disease.
U2 - 10.1016/j.bone.2016.01.029
DO - 10.1016/j.bone.2016.01.029
M3 - Article
SN - 8756-3282
VL - 88
SP - 92
EP - 100
JO - Bone
JF - Bone
ER -