An AeroCom-AeroSat study: Intercomparison of satellite AOD datasets for aerosol model evaluation

Nick Schutgens, Andrew M. Sayer, Andreas Heckel, Christina Hsu, Hiren Jethva, Gerrit De Leeuw, Peter J.T. Leonard, Robert C. Levy, Antti Lipponen, Alexei Lyapustin, Peter North, Thomas Popp, Caroline Poulsen, Virginia Sawyer, Larisa Sogacheva, Gareth Thomas, Omar Torres, Yujie Wang, Stefan Kinne, Michael SchulzPhilip Stier

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

To better understand and characterize current uncertainties in the important observational constraint of climate models of aerosol optical depth (AOD), we evaluate and intercompare 14 satellite products, representing nine different retrieval algorithm families using observations from five different sensors on six different platforms. The satellite products (super-observations consisting of 1*1 daily aggregated retrievals drawn from the years 2006, 2008 and 2010) are evaluated with AErosol RObotic NETwork (AERONET) and Maritime Aerosol Network (MAN) data. Results show that different products exhibit different regionally varying biases (both under- and overestimates) that may reach, although a typical bias would be 15 %-25 % (depending on the product). In addition to these biases, the products exhibit random errors that can be 1.6 to 3 times as large. Most products show similar performance, although there are a few exceptions with either larger biases or larger random errors. The intercomparison of satellite products extends this analysis and provides spatial context to it. In particular, we show that aggregated satellite AOD agrees much better than the spatial coverage (often driven by cloud masks) within the 1*1 grid cells. Up to patterns and varies from 10 % (parts of the ocean) to 100 % (central Asia and Australia). More importantly, we show that the diversity may be used as an indication of AOD uncertainty, at least for the better performing products. This provides modellers with a global map of expected AOD uncertainty in satellite products, allows assessment of products away from AERONET sites, can provide guidance for future AERONET locations and offers suggestions for product improvements. We account for statistical and sampling noise in our analyses. Sampling noise, variations due to the evaluation of different subsets of the data, causes important changes in error metrics. The consequences of this noise term for product evaluation are discussed.

Original languageEnglish
Article number12431
Pages (from-to)12431-12457
Number of pages27
JournalAtmospheric Chemistry and Physics
Volume20
Issue number21
DOIs
Publication statusPublished - 30 Oct 2020

Funding

We thank the PI(s) and Co-I(s) and their staff for establishing and maintaining the many AERONET sites used in this investigation. The figures in this paper were prepared using David W. Fanning s Coyote Library for IDL. We thank Knut Stamnes and one anonymous reviewer for their useful comments on an earlier version of this paper. The work by Nick Schutgens is part of the Vici research programme, project number 016.160.324, which is (partly) financed by the Dutch Research Council (NWO). Philip Stier was funded by the European Research Council (ERC) project constRaining the EffeCts of Aerosols on Precipitation (RECAP) under the European Union s Horizon 2020 Research and Innovation programme, grant agreement no. 724602, the Alexander von Humboldt Foundation and the Natural Environment Research Council project NE/P013406/1 (A-CURE).

FundersFunder number
European Union s Horizon 2020 research and innovation programme
Knut Stamnes016.160.324
Alexander von Humboldt-Stiftung
Horizon 2020 Framework Programme724602
Natural Environment Research CouncilNE/P013406/1
European Research Council
Nederlandse Organisatie voor Wetenschappelijk Onderzoek

    Fingerprint

    Dive into the research topics of 'An AeroCom-AeroSat study: Intercomparison of satellite AOD datasets for aerosol model evaluation'. Together they form a unique fingerprint.

    Cite this