TY - JOUR
T1 - An alternative model for silica enrichment in the Kaapvaal subcontinental lithospheric mantle
AU - Wasch, L.J.
AU - van der Zwan, F.
AU - Nebel, O.
AU - Morel, M.L.A.
AU - Hellebrand, E.W.G.
AU - Pearson, D.G.
AU - Davies, G.R.
PY - 2009
Y1 - 2009
N2 - The Mg- and Si-rich nature of the sub-cratonic lithospheric mantle (SCLM) beneath the Kaapvaal Craton indicates extensive melt depletion, followed by a Si-enrichment process. Six highly silica enriched peridotites from Kimberley containing high amounts of orthopyroxene (Opx) or garnet (Grt) that are locally concentrated in clots, were investigated to constrain the timing and nature of the Si-enrichment process. A clinopyroxene-bearing lherzolite containing an Opx-clot was studied to quantify the effects of recent metasomatism on the Si-enriched samples. Minerals from the lherzolite, together with Opx from harzburgites and Opx- and Grt-clots have Hf-Nd isotope ratios at the time of kimberlite eruption, 90 Ma, comparable to group I kimberlites and are close to trace element equilibrium with kimberlitic melts. This implies the xenoliths underwent major interaction with kimberlitic melts close to the time of kimberlite eruption. Harzburgites and mineral clots record equilibration pressures and temperatures of, respectively, between 3.5-4.3 GPa and 930-1060 °C. The garnets in Opx-clots have low Lu/Hf and ε
AB - The Mg- and Si-rich nature of the sub-cratonic lithospheric mantle (SCLM) beneath the Kaapvaal Craton indicates extensive melt depletion, followed by a Si-enrichment process. Six highly silica enriched peridotites from Kimberley containing high amounts of orthopyroxene (Opx) or garnet (Grt) that are locally concentrated in clots, were investigated to constrain the timing and nature of the Si-enrichment process. A clinopyroxene-bearing lherzolite containing an Opx-clot was studied to quantify the effects of recent metasomatism on the Si-enriched samples. Minerals from the lherzolite, together with Opx from harzburgites and Opx- and Grt-clots have Hf-Nd isotope ratios at the time of kimberlite eruption, 90 Ma, comparable to group I kimberlites and are close to trace element equilibrium with kimberlitic melts. This implies the xenoliths underwent major interaction with kimberlitic melts close to the time of kimberlite eruption. Harzburgites and mineral clots record equilibration pressures and temperatures of, respectively, between 3.5-4.3 GPa and 930-1060 °C. The garnets in Opx-clots have low Lu/Hf and ε
U2 - 10.1016/j.gca.2009.07.038
DO - 10.1016/j.gca.2009.07.038
M3 - Article
SN - 0016-7037
VL - 73
SP - 6894
EP - 6917
JO - Geochimica et Cosmochimica Acta
JF - Geochimica et Cosmochimica Acta
ER -