An epidermal equivalent assay for identification and ranking potency of contact sensitizers

S. Gibbs, E. Corsini, S.W. Spiekstra, V. Galbiati, H.W. Fuchs, G. Degeorge, M. Troese, P. Hayden, W. Deng, E. Roggen

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

The purpose of this study was to explore the possibility of combining the epidermal equivalent (EE) potency assay with the assay which assesses release of interleukin-18 (IL-18) to provide a single test for identification and classification of skin sensitizing chemicals, including chemicals of low water solubility or stability. A protocol was developed using different 3D-epidermal models including in house VUMC model, epiCS® (previously EST1000™), MatTek EpiDerm™ and SkinEthic™ RHE and also the impact of different vehicles (acetone:olive oil 4:1, 1% DMSO, ethanol, water) was investigated. Following topical exposure for 24 h to 17 contact allergens and 13 non-sensitizers a robust increase in IL-18 release was observed only after exposure to contact allergens. A putative prediction model is proposed from data obtained from two laboratories yielding 95% accuracy. Correlating the in vitro EE sensitizer potency data, which assesses the chemical concentration which results in 50% cytotoxicity (EE-EC50) with human and animal data showed a superior correlation with human DSA05 (μg/cm2) data (Spearman r = 0.8500; P value (two-tailed) = 0.0061) compared to LLNA data (Spearman r = 0.5968; P value (two-tailed) = 0.0542). DSA05 = induction dose per skin area that produces a positive response in 5% of the tested population Also a good correlation was observed for release of IL-18 (SI-2) into culture supernatants with human DSA05 data (Spearman r = 0.8333; P value (two-tailed) = 0.0154). This easily transferable human in vitro assay appears to be very promising, but additional testing of a larger chemical set with the different EE models is required to fully evaluate the utility of this assay and to establish a definitive prediction model.
Original languageEnglish
Pages (from-to)529-541
JournalToxicology and Applied Pharmacology
Volume272
Issue number2
DOIs
Publication statusPublished - 2013

Fingerprint

Dive into the research topics of 'An epidermal equivalent assay for identification and ranking potency of contact sensitizers'. Together they form a unique fingerprint.

Cite this