TY - JOUR
T1 - Analogue modelling of different angle thrust-wrench fault interference in a brittle medium
AU - Rosas, F.M.
AU - Duarte, João C.
AU - Schellart, W. P.
AU - Tomás, R.
AU - Grigorova, V.
AU - Terrinha, P.
PY - 2015/5/1
Y1 - 2015/5/1
N2 - Analogue modelling experiments of thrust-wrench fault interference in a brittle medium are presented and discussed. Simultaneous reactivation of confining strike-slip and thrust faults bounding a (corner) zone of interference defined by the angle between the two fault systems is simulated, instead of previously reported discrete (time and space) superposition of alternating thrust and strike-slip events. The influence of different considered interference angles of 60°, 90° and 120° is investigated through comparison between the obtained structural configurations in each case. It is shown that under these conditions a characteristic morpho-structural pattern with a deltoid shape resembling a tie-knot consistently forms in the (corner) zone between the two fault systems. The specific structural configuration of a such tie-knot structure (TKS) varies significantly as a function of the prescribed fault interference angle, which determines the orientation of the displacement vector shear component (ds→) along the main frontal thrust system, and critically controls the geometry and kinematics of the TKS. Comparison with three natural examples shows remarkable geometric and kinematic similarity, confirming model predictions and suggesting the existence of common underlying dynamic processes governing the specific (TKS) structural configuration of different thrust-wrench fault interference corner-zones in nature.
AB - Analogue modelling experiments of thrust-wrench fault interference in a brittle medium are presented and discussed. Simultaneous reactivation of confining strike-slip and thrust faults bounding a (corner) zone of interference defined by the angle between the two fault systems is simulated, instead of previously reported discrete (time and space) superposition of alternating thrust and strike-slip events. The influence of different considered interference angles of 60°, 90° and 120° is investigated through comparison between the obtained structural configurations in each case. It is shown that under these conditions a characteristic morpho-structural pattern with a deltoid shape resembling a tie-knot consistently forms in the (corner) zone between the two fault systems. The specific structural configuration of a such tie-knot structure (TKS) varies significantly as a function of the prescribed fault interference angle, which determines the orientation of the displacement vector shear component (ds→) along the main frontal thrust system, and critically controls the geometry and kinematics of the TKS. Comparison with three natural examples shows remarkable geometric and kinematic similarity, confirming model predictions and suggesting the existence of common underlying dynamic processes governing the specific (TKS) structural configuration of different thrust-wrench fault interference corner-zones in nature.
KW - Analogue modelling
KW - Brittle deformation
KW - Corner zone thrust-wrench tectonics
KW - Fault interference angle
UR - http://www.scopus.com/inward/record.url?scp=84925824124&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84925824124&partnerID=8YFLogxK
U2 - 10.1016/j.jsg.2015.03.005
DO - 10.1016/j.jsg.2015.03.005
M3 - Article
AN - SCOPUS:84925824124
SN - 0191-8141
VL - 74
SP - 81
EP - 104
JO - Journal of Structural Geology
JF - Journal of Structural Geology
ER -