TY - JOUR
T1 - Analysis of a predator–prey model with specific time scales:a geometrical approach proving the occurrence of canard solutions
AU - Poggiale, Jean Christophe
AU - Aldebert, Clément
AU - Girardot, Benjamin
AU - Kooi, Bob W.
PY - 2020
Y1 - 2020
N2 - We study a predator–prey model with different characteristic time scales for the prey and predator populations, assuming that the predator dynamics is much slower than the prey one. Geometrical Singular Perturbation theory provides the mathematical framework for analyzing the dynamical properties of the model. This model exhibits a Hopf bifurcation and we prove that when this bifurcation occurs, a canard phenomenon arises. We provide an analytic expression to get an approximation of the bifurcation parameter value for which a maximal canard solution occurs. The model is the well-known Rosenzweig–MacArthur predator–prey differential system. An invariant manifold with a stable and an unstable branches occurs and a geometrical approach is used to explicitly determine a solution at the intersection of these branches. The method used to perform this analysis is based on Blow-up techniques. The analysis of the vector field on the blown-up object at an equilibrium point where a Hopf bifurcation occurs with zero perturbation parameter representing the time scales ratio, allows to prove the result. Numerical simulations illustrate the result and allow to see the canard explosion phenomenon.
AB - We study a predator–prey model with different characteristic time scales for the prey and predator populations, assuming that the predator dynamics is much slower than the prey one. Geometrical Singular Perturbation theory provides the mathematical framework for analyzing the dynamical properties of the model. This model exhibits a Hopf bifurcation and we prove that when this bifurcation occurs, a canard phenomenon arises. We provide an analytic expression to get an approximation of the bifurcation parameter value for which a maximal canard solution occurs. The model is the well-known Rosenzweig–MacArthur predator–prey differential system. An invariant manifold with a stable and an unstable branches occurs and a geometrical approach is used to explicitly determine a solution at the intersection of these branches. The method used to perform this analysis is based on Blow-up techniques. The analysis of the vector field on the blown-up object at an equilibrium point where a Hopf bifurcation occurs with zero perturbation parameter representing the time scales ratio, allows to prove the result. Numerical simulations illustrate the result and allow to see the canard explosion phenomenon.
KW - Blow-up
KW - Canard solution
KW - Invariant manifolds
KW - Predator–prey dynamics
KW - Singular perturbations
UR - http://www.scopus.com/inward/record.url?scp=85061920540&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85061920540&partnerID=8YFLogxK
U2 - 10.1007/s00285-019-01337-4
DO - 10.1007/s00285-019-01337-4
M3 - Article
AN - SCOPUS:85061920540
SN - 0303-6812
VL - 80
SP - 39
EP - 60
JO - Journal of Mathematical Biology
JF - Journal of Mathematical Biology
IS - 1-2
ER -