Analysis of named entity recognition and linking for tweets

L. Derczynski, D. Maynard, G. Rizzo, M.G.J. van Erp, G. Gorrell, R. Troncy, J. Petrak, K. Bontcheva

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Applying natural language processing for mining and intelligent information access to tweets (a form of microblog) is a challenging, emerging research area. Unlike carefully authored news text and other longer content, tweets pose a number of new challenges, due to their short, noisy, context-dependent, and dynamic nature. Information extraction from tweets is typically performed in a pipeline, comprising consecutive stages of language identification, tokenisation, part-of-speech tagging, named entity recognition and entity disambiguation (e.g. with respect to DBpedia). In this work, we describe a new Twitter entity disambiguation dataset, and conduct an empirical analysis of named entity recognition and disambiguation, investigating how robust a number of state-of-the-art systems are on such noisy texts, what the main sources of error are, and which problems should be further investigated to improve the state of the art.
Original languageEnglish
Pages (from-to)32-49
JournalInformation Processing and Management
Volume51
Issue number2
DOIs
Publication statusPublished - 2015

Fingerprint

Dive into the research topics of 'Analysis of named entity recognition and linking for tweets'. Together they form a unique fingerprint.

Cite this