Analysis of Twitter data with the Bayesian fused graphical lasso

Mehran Aflakparast, Mathisca de Gunst, Wessel van Wieringen*

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review


We propose a method to simplify textual Twitter data into understandable networks of terms that can signify important events and their possible changes over time. The method allows for common characteristics of the networks across time periods and each period can comprise multiple unknown sub-networks. The networks are described by Gaussian graphical models and their parameter values are estimated through a Bayesian approach with a fused lasso-type prior on the precision matrices of the underlying mixtures of the sub-models. A flexible data allocation scheme is at the heart of an MCMC algorithm to recover mean and covariance parameters of the mixture components. Several implementations of the outlined estimation procedure are studied and compared based on simulated data. The procedure with the highest predictive power is used for mining tweets regarding the 2009 Iranian presidential election.

Original languageEnglish
Article numbere0235596
Pages (from-to)1-28
Number of pages28
JournalPLoS ONE
Issue number7
Early online date27 Jul 2020
Publication statusPublished - Jul 2020


This research was supported by NWO-STAR grant 613.009.014 from the Netherlands Organization for Scientific Research.

FundersFunder number
Nederlandse Organisatie voor Wetenschappelijk Onderzoek


    Dive into the research topics of 'Analysis of Twitter data with the Bayesian fused graphical lasso'. Together they form a unique fingerprint.

    Cite this