Analyzing postprandial metabolomics data using multiway models: a simulation study

Lu Li*, Shi Yan, Barbara M. Bakker, Huub Hoefsloot, Bo Chawes, David Horner, Morten A. Rasmussen, Age K. Smilde, Evrim Acar*

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Background: Analysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for early diagnosis of metabolic diseases and advancing precision nutrition and medicine. Postprandial metabolomics measurements at several time points from multiple subjects can be arranged as a subjects by metabolites by time points array. Traditional analysis methods are limited in terms of revealing subject groups, related metabolites, and temporal patterns simultaneously from such three-way data. Results: We introduce an unsupervised multiway analysis approach based on the CANDECOMP/PARAFAC (CP) model for improved analysis of postprandial metabolomics data guided by a simulation study. Because of the lack of ground truth in real data, we generate simulated data using a comprehensive human metabolic model. This allows us to assess the performance of CP models in terms of revealing subject groups and underlying metabolic processes. We study three analysis approaches: analysis of fasting-state data using principal component analysis, T0-corrected data (i.e., data corrected by subtracting fasting-state data) using a CP model and full-dynamic (i.e., full postprandial) data using CP. Through extensive simulations, we demonstrate that CP models capture meaningful and stable patterns from simulated meal challenge data, revealing underlying mechanisms and differences between diseased versus healthy groups. Conclusions: Our experiments show that it is crucial to analyze both fasting-state and T0-corrected data for understanding metabolic differences among subject groups. Depending on the nature of the subject group structure, the best group separation may be achieved by CP models of T0-corrected or full-dynamic data. This study introduces an improved analysis approach for postprandial metabolomics data while also shedding light on the debate about correcting baseline values in longitudinal data analysis.

Original languageEnglish
Article number94
Pages (from-to)1-22
Number of pages22
JournalBMC Bioinformatics
Volume25
Early online date4 Mar 2024
DOIs
Publication statusPublished - 2024

Bibliographical note

Publisher Copyright:
© The Author(s) 2024.

Keywords

  • CANDECOMP/PARAFAC (CP)
  • Meal challenge test
  • Postprandial metabolomics data
  • Principal component analysis (PCA)
  • Tensor factorizations (multiway data analysis)
  • Time-resolved metabolomics data
  • Whole-body metabolic model

Fingerprint

Dive into the research topics of 'Analyzing postprandial metabolomics data using multiway models: a simulation study'. Together they form a unique fingerprint.

Cite this