Abstract
Introduction
Previous research showed an antimicrobial effect of vanadium chloroperoxidase (VCPO) on in vitro Enterococcus faecalis biofilms. The current study aimed to optimize the use of this enzyme at the root canal pH using a modified VCPO (mVCPO) that was adapted to function at a higher pH and to explore the biocompatibility of mVCPO.
Methods
The activity of the original and modified VCPO was assessed using the monochlorodimedone assay. For antimicrobial assessment, 48-hour biofilms of E. faecalis OS-16 were incubated 5 or 30 minutes with mVCPO, bromide, and hydrogen peroxide, and colony-forming units were determined. A metabolic activity assay was used to evaluate the cytotoxic effect of mVCPO on oral fibroblasts.
Results
Reaction products generated by mVCPO at a root canal pH of 7.7 significantly inactivated the biofilm after 5 minutes and even more after 30 minutes (Mann-Whitney U test, P < .05). The mVCPO reaction products showed less cytotoxic effects than control solutions and 0.5% sodium hypochlorite (Kruskal-Wallis test, P < .05).
Conclusions
The incubation of mVCPO in the presence of its substrates with in vitro E. faecalis biofilms showed a significant antimicrobial effect at the root canal pH. Also, cytotoxicity tests showed preliminary biocompatibility. Therefore, an interappointment dressing containing mVCPO could aid in improving current endodontic treatment through continuous and local generation of antimicrobials.
Previous research showed an antimicrobial effect of vanadium chloroperoxidase (VCPO) on in vitro Enterococcus faecalis biofilms. The current study aimed to optimize the use of this enzyme at the root canal pH using a modified VCPO (mVCPO) that was adapted to function at a higher pH and to explore the biocompatibility of mVCPO.
Methods
The activity of the original and modified VCPO was assessed using the monochlorodimedone assay. For antimicrobial assessment, 48-hour biofilms of E. faecalis OS-16 were incubated 5 or 30 minutes with mVCPO, bromide, and hydrogen peroxide, and colony-forming units were determined. A metabolic activity assay was used to evaluate the cytotoxic effect of mVCPO on oral fibroblasts.
Results
Reaction products generated by mVCPO at a root canal pH of 7.7 significantly inactivated the biofilm after 5 minutes and even more after 30 minutes (Mann-Whitney U test, P < .05). The mVCPO reaction products showed less cytotoxic effects than control solutions and 0.5% sodium hypochlorite (Kruskal-Wallis test, P < .05).
Conclusions
The incubation of mVCPO in the presence of its substrates with in vitro E. faecalis biofilms showed a significant antimicrobial effect at the root canal pH. Also, cytotoxicity tests showed preliminary biocompatibility. Therefore, an interappointment dressing containing mVCPO could aid in improving current endodontic treatment through continuous and local generation of antimicrobials.
Original language | English |
---|---|
Pages (from-to) | 1035-1038 |
Journal | The Journal of Endodontics |
Volume | 39 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2013 |