Antivenom neutralization of coagulopathic snake venom toxins assessed by bioactivity profiling using nanofractionation analytics

Chunfang Xie, Julien Slagboom, Laura Oana Albulescu, Ben Bruyneel, Kristina B.M. Still, Freek J. Vonk, Govert W. Somsen, Nicholas R. Casewell, Jeroen Kool*

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review


Venomous snakebite is one of the world’s most lethal neglected tropical diseases. Animal-derived antivenoms are the only standardized specific therapies currently available for treating snakebite envenoming, but due to venom variation, often this treatment is not effective in counteracting all clinical symptoms caused by the multitude of injected toxins. In this study, the coagulopathic toxicities of venoms from the medically relevant snake species Bothrops asper, Calloselasma rhodostoma, Deinagkistrodon acutus, Daboia russelii, Echis carinatus and Echis ocellatus were assessed. The venoms were separated by liquid chromatography (LC) followed by nanofractionation and parallel mass spectrometry (MS). A recently developed high-throughput coagulation assay was employed to assess both the pro- and anticoagulant activity of separated venom toxins. The neutralization capacity of antivenoms on separated venom components was assessed and the coagulopathic venom peptides and enzymes that were either neutralized or remained active in the presence of antivenom were identified by correlating bioassay results with the MS data and with off-line generated proteomics data. The results showed that most snake venoms analyzed contained both procoagulants and anticoagulants. Most anticoagulants were identified as phospholipases A2s (PLA2s) and most procoagulants correlated with snake venom metalloproteinases (SVMPs) and serine proteases (SVSPs). This information can be used to better understand antivenom neutralization and can aid in the development of next-generation antivenom treatments.

Original languageEnglish
Article number53
Pages (from-to)1-16
Number of pages16
Issue number1
Publication statusPublished - 16 Jan 2020


C.X. was funded by a China Scholarship Council (CSC) fellowship. N.C. acknowledges funding from a Sir Henry Dale Fellowship (200517/Z/16/Z) jointly funded by the Wellcome Trust and Royal Society. The APC was funded by the Wellcome Trust.

FundersFunder number
Wellcome Trust
Royal Society
China Scholarship Council200517/Z/16/Z


    • Anticoagulation
    • Antivenom
    • Coagulation
    • Nanofractionation
    • Snakebite


    Dive into the research topics of 'Antivenom neutralization of coagulopathic snake venom toxins assessed by bioactivity profiling using nanofractionation analytics'. Together they form a unique fingerprint.

    Cite this