Abstract
Water quality deterioration is a common occurrence that may limit the recovery of injected water during aquifer storage and recovery (ASR) operations. This limitation is often induced by the oxidation of the reduced aquifer components by the oxygenated injection water. This study explores the potential of aquifer pre-oxidation using permanganate to improve the quality and volume of the recovered water during ASR. An experimental ASR column setup was developed to simulate the oxygenated water injection and recovery cycles. Undisturbed sediments from an anoxic brackish aquifer at a pilot ASR site were used. A series of 4 conventional ASR cycles injecting oxygenated tap (drinking) water was initially performed. These experimental trials showed a persistent Mn(II) production due to the dissolution of a Mn-containing carbonate that was triggered by pyrite oxidation reactions, as shown by the observed sulfate production. The rise in the Mn(II) concentrations above the drinking water standards would limit the recovery to 15-30% of the injected water without treatment of the recovered water. To a lesser extent, arsenic production resulting from the oxidative dissolution of pyrite posed a water quality threat to the ASR operation. Consequently, a second series of experiments was performed with an oxidation cycle using a dilute (5%) potassium permanganate (KMnO
Original language | English |
---|---|
Pages (from-to) | 25-36 |
Journal | Applied Geochemistry |
Volume | 50 |
DOIs | |
Publication status | Published - 2014 |