Arm load magnitude affects selective shoulder muscle activation

F. Steenbrink, C.G. Meskers, B. van Vliet, J. Slaman, H.E.J. Veeger, J.H. Groot

    Research output: Contribution to JournalArticleAcademicpeer-review

    190 Downloads (Pure)

    Abstract

    For isometric tasks, shoulder muscle forces are assumed to scale linearly with the external arm load magnitude, i.e., muscle force ratios are constant. Inverse dynamic modeling generally predicts such linear scaling behavior, with a critical role for the arbitrary load sharing criteria, i.e., the "cost function". We tested the linearity of the relation between external load magnitude exerted on the humerus and shoulder muscle activation. Six isometric force levels ranging from 17 to 100% of maximal arm force were exerted in 24 directions in a plane perpendicular to the longitudinal axis of the humerus. The direction of maximum muscle activation, the experimentally observed so called Principal Action (PA), was determined for each force magnitude in 12 healthy subjects. This experiment was also simulated with the Delft Shoulder and Elbow Model (DSEM) using two cost functions: (1) minimizing muscle stress and (2) a compound, energy related cost function. PA, both experimental (PA
    Original languageEnglish
    Pages (from-to)565-572
    JournalMedical & Biological Engineering & Computing
    Volume47
    Issue number5
    DOIs
    Publication statusPublished - 2009

    Fingerprint

    Dive into the research topics of 'Arm load magnitude affects selective shoulder muscle activation'. Together they form a unique fingerprint.

    Cite this