Artifact rates for 2D retinal nerve fiber layer thickness versus 3d neuroretinal rim thickness using spectral-domain optical coherence tomography

Elli A. Park, Edem Tsikata, Jenny Jyoung Lee, Eric Shieh, Boy Braaf, Benjamin J. Vakoc, Brett E. Bouma, Johannes F. de Boer, Teresa C. Chen*

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Purpose: To compare the rates of clinically significant artifacts for two-dimensional peripapillary retinal nerve fiber layer (RNFL) thickness versus three-dimensional (3D) neuroretinal rim thickness using spectral-domain optical coherence tomography (SD-OCT). Methods: Only one eye per patient was used for analysis of 120 glaucoma patients and 114 normal patients. For RNFL scans and optic nerve scans, 15 artifact types were calculated per B-scan and per eye. Neuroretinal rim tissue was quantified by the minimum distance band (MDB). Global MDB neuroretinal rim thicknesses were calculated before and after manual deletion of B-scans with artifacts and subsequent automated interpo-lation. A clinically significant artifact was defined as one requiring manual correction or repeat scanning. Results: Among glaucomatous eyes, artifact rates per B-scan were significantly more common in RNFL scans (61.7%, 74 of 120) compared to B-scans in neuroretinal rim volume scans (20.9%, 1423 of 6820) (95% confidence interval [CI], 31.6–50.0; P < 0.0001). For clinically significant artifact rates per eye, optic nerve scans had significantly fewer artifacts (15.8% of glaucomatous eyes, 13.2% of normal eyes) compared to RNFL scans (61.7% of glaucomatous eyes, 25.4% of normal eyes) (glaucoma group: 95% CI, 34.1–57.5, P < 0.0001; normal group: 95% CI, 1.3–23.3, P = 0.03). Conclusions: Compared to the most commonly used RNFL thickness scans, optic nerve volume scans less frequently require manual correction or repeat scanning to obtain accurate measurements. Translational Relevance: This paper illustrates the potential for 3D OCT algorithms to improve in vivo imaging in glaucoma.

Original languageEnglish
Article number10
Pages (from-to)1-12
Number of pages12
JournalTranslational Vision Science and Technology
Volume9
Issue number10
DOIs
Publication statusPublished - Sep 2020

Keywords

  • Artifact
  • Glaucoma
  • Minimum distance band
  • Optic nerve
  • Optical coherence tomography

Fingerprint Dive into the research topics of 'Artifact rates for 2D retinal nerve fiber layer thickness versus 3d neuroretinal rim thickness using spectral-domain optical coherence tomography'. Together they form a unique fingerprint.

Cite this