TY - JOUR
T1 - Artifacts in pulse transit time measurements using standard patient monitoring equipment
AU - Bennis, Frank C.
AU - van Pul, Carola
AU - van den Bogaart, Jarno J.L.
AU - Andriessen, Peter
AU - Kramer, Boris W.
AU - Delhaas, Tammo
PY - 2019/6
Y1 - 2019/6
N2 - Objective Pulse transit time (PTT) refers to the time it takes a pulse wave to travel between two arterial sites. PTT can be estimated, amongst others, using the electrocardiogram (ECG) and photoplethysmogram (PPG). Because we observed a sawtooth artifact in the PTT while using standard patient monitoring equipment for ECG and PPG, we explored the reasons for this artifact. Methods PPG and ECG were simulated at a heartrate of both 100 and 160 beats per minute while using a Masimo PPG post-processing module and a Philips patient monitor setup at the neonatal intensive care unit. Two different post-processing modules were used. PTT was defined as the difference between the R-peak in the ECG and the point of 50% increase in the PPG. Results A sawtooth artifact was seen in all simulations. Both length (59.2 to 72.4 s) and amplitude (30.8 to 36.0 ms) of the sawtooth were dependent on the post-processing module used. Furthermore, the absolute PTT value differed up to 250 ms depending on post-processing module and heart rate. The sawtooth occurred because the PPG wave continuously showed a minimal prolongation during the length of the sawtooth, followed by a sudden shortening. Both artifacts were generated in the post-processing module containing Masimo algorithms. Conclusion Post-processing of the PPG signal in the Masimo module of the Philips patient monitor introduces a sawtooth in PPG and derived PTT. This sawtooth, together with a large module-dependent absolute difference in PTT, renders the thus-derived PTT insufficient for clinical purposes.
AB - Objective Pulse transit time (PTT) refers to the time it takes a pulse wave to travel between two arterial sites. PTT can be estimated, amongst others, using the electrocardiogram (ECG) and photoplethysmogram (PPG). Because we observed a sawtooth artifact in the PTT while using standard patient monitoring equipment for ECG and PPG, we explored the reasons for this artifact. Methods PPG and ECG were simulated at a heartrate of both 100 and 160 beats per minute while using a Masimo PPG post-processing module and a Philips patient monitor setup at the neonatal intensive care unit. Two different post-processing modules were used. PTT was defined as the difference between the R-peak in the ECG and the point of 50% increase in the PPG. Results A sawtooth artifact was seen in all simulations. Both length (59.2 to 72.4 s) and amplitude (30.8 to 36.0 ms) of the sawtooth were dependent on the post-processing module used. Furthermore, the absolute PTT value differed up to 250 ms depending on post-processing module and heart rate. The sawtooth occurred because the PPG wave continuously showed a minimal prolongation during the length of the sawtooth, followed by a sudden shortening. Both artifacts were generated in the post-processing module containing Masimo algorithms. Conclusion Post-processing of the PPG signal in the Masimo module of the Philips patient monitor introduces a sawtooth in PPG and derived PTT. This sawtooth, together with a large module-dependent absolute difference in PTT, renders the thus-derived PTT insufficient for clinical purposes.
UR - http://www.scopus.com/inward/record.url?scp=85067616490&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85067616490&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0218784
DO - 10.1371/journal.pone.0218784
M3 - Article
C2 - 31226142
AN - SCOPUS:85067616490
SN - 1932-6203
VL - 14
JO - PLoS ONE
JF - PLoS ONE
IS - 6
M1 - e0218784
ER -