Abstract
Although group convolutional networks are able to learn powerful representations based on symmetry patterns, they lack explicit means to learn meaningful relationships among them (e.g., relative positions and poses). In this paper, we present attentive group equivariant convolutions, a generalization of the group convolution, in which attention is applied during the course of convolution to accentuate meaningful symmetry combinations and suppress non-plausible, misleading ones. We indicate that prior work on visual attention can be described as special cases of our proposed framework and show empirically that our attentive group equivariant convolutional networks consistently outperform conventional group convolutional networks on benchmark image datasets. Simultaneously, we provide interpretability to the learned concepts through the visualization of equivariant attention maps.
Original language | English |
---|---|
Title of host publication | Proceedings of the 37th International Conference on Machine Learning [Online] |
Editors | Hal Daumé III, Aarti Singh |
Publisher | MLR |
Pages | 8188-8199 |
Number of pages | 12 |
Publication status | Published - 2020 |
Event | 37th International Conference on Machine Learning, 13-18 July 2020, Virtual - Duration: 13 Jul 2020 → 18 Jul 2020 Conference number: 37 |
Publication series
Name | Proceedings of Machine Learning Research |
---|---|
Publisher | MLR |
Volume | 119 |
Conference
Conference | 37th International Conference on Machine Learning, 13-18 July 2020, Virtual |
---|---|
Period | 13/07/20 → 18/07/20 |