TY - JOUR
T1 - Attributional and consequential LCA of milk production
AU - Thomassen, Marlies A.
AU - Dalgaard, Randi
AU - Heijungs, Reinout
AU - De Boer, Imke
PY - 2008/6
Y1 - 2008/6
N2 - Background, aim and scope: Different ways of performing a life cycle assessment (LCA) are used to assess the environmental burden of milk production. A strong connection exists between the choice between attributional LCA (ALCA) and consequential LCA (CLCA) and the choice of how to handle co-products. Insight is needed in the effect of choice on results of environmental analyses of agricultural products, such as milk. The main goal of this study was to demonstrate and compare ALCA and CLCA of an average conventional milk production system in The Netherlands. Materials and methods: ALCA describes the pollution and resource flows within a chosen system attributed to the delivery of a specified amount of the functional unit. CLCA estimates how pollution and resource flows within a system change in response to a change in output of the functional unit. For an average Dutch conventional milk production system, an ALCA (mass and economic allocation) and a CLCA (system expansion) were performed. Impact categories included in the analyses were: land use, energy use, climate change, acidification and eutrophication. The comparison was based on four criteria: hotspot identification, comprehensibility, quality and availability of data. Results: Total environmental burdens were lower when using CLCA compared with ALCA. Major hotspots for the different impact categories when using CLCA and ALCA were similar, but other hotspots differed in contributions, order and type. As experienced by the authors, ALCA and use of co-product allocation are difficult to comprehend for a consequential practitioner, while CLCA and system expansion are difficult to comprehend for an attributional practitioner. Literature shows concentrates used within ALCA will be more understandable for a feeding expert than the feed used within CLCA. Outcomes of CLCA are more sensitive to uncertainties compared with ALCA, due to the inclusion of market prospects. The amount of data required within CLCA is similar compared with ALCA. Discussion: The main cause of these differences between ALCA and CLCA is the fact that different systems are modelled. The goal of the study or the research question to be answered defines the system under study. In general, the goal of CLCA is to assess environmental consequences of a change in demand, whereas the goal of ALCA is to assess the environmental burden of a product, assuming a status-quo situation. Nowadays, however, most LCA practitioners chose one methodology independent of their research question. Conclusions: This study showed it is possible to perform both ALCA (mass and economic allocation) and CLCA (system expansion) of milk. Choices of methodology, however, resulted in differences in: total quantitative outcomes, hotspots, degree of understanding and quality. Recommendations and perspectives: We recommend LCA practitioners to better distinguish between ALCA and CLCA in applied studies to reach a higher degree of transparency. Furthermore, we recommend LCA practitioners of different research areas to perform similar case studies to address differences between ALCA and CLCA of the specific products as the outcomes might differ from our study.
AB - Background, aim and scope: Different ways of performing a life cycle assessment (LCA) are used to assess the environmental burden of milk production. A strong connection exists between the choice between attributional LCA (ALCA) and consequential LCA (CLCA) and the choice of how to handle co-products. Insight is needed in the effect of choice on results of environmental analyses of agricultural products, such as milk. The main goal of this study was to demonstrate and compare ALCA and CLCA of an average conventional milk production system in The Netherlands. Materials and methods: ALCA describes the pollution and resource flows within a chosen system attributed to the delivery of a specified amount of the functional unit. CLCA estimates how pollution and resource flows within a system change in response to a change in output of the functional unit. For an average Dutch conventional milk production system, an ALCA (mass and economic allocation) and a CLCA (system expansion) were performed. Impact categories included in the analyses were: land use, energy use, climate change, acidification and eutrophication. The comparison was based on four criteria: hotspot identification, comprehensibility, quality and availability of data. Results: Total environmental burdens were lower when using CLCA compared with ALCA. Major hotspots for the different impact categories when using CLCA and ALCA were similar, but other hotspots differed in contributions, order and type. As experienced by the authors, ALCA and use of co-product allocation are difficult to comprehend for a consequential practitioner, while CLCA and system expansion are difficult to comprehend for an attributional practitioner. Literature shows concentrates used within ALCA will be more understandable for a feeding expert than the feed used within CLCA. Outcomes of CLCA are more sensitive to uncertainties compared with ALCA, due to the inclusion of market prospects. The amount of data required within CLCA is similar compared with ALCA. Discussion: The main cause of these differences between ALCA and CLCA is the fact that different systems are modelled. The goal of the study or the research question to be answered defines the system under study. In general, the goal of CLCA is to assess environmental consequences of a change in demand, whereas the goal of ALCA is to assess the environmental burden of a product, assuming a status-quo situation. Nowadays, however, most LCA practitioners chose one methodology independent of their research question. Conclusions: This study showed it is possible to perform both ALCA (mass and economic allocation) and CLCA (system expansion) of milk. Choices of methodology, however, resulted in differences in: total quantitative outcomes, hotspots, degree of understanding and quality. Recommendations and perspectives: We recommend LCA practitioners to better distinguish between ALCA and CLCA in applied studies to reach a higher degree of transparency. Furthermore, we recommend LCA practitioners of different research areas to perform similar case studies to address differences between ALCA and CLCA of the specific products as the outcomes might differ from our study.
KW - Attributional LCA
KW - Co-product allocation
KW - Consequential LCA
KW - Milk production
KW - System expansion
UR - http://www.scopus.com/inward/record.url?scp=45849136730&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=45849136730&partnerID=8YFLogxK
U2 - 10.1007/s11367-008-0007-y
DO - 10.1007/s11367-008-0007-y
M3 - Article
AN - SCOPUS:45849136730
SN - 0948-3349
VL - 13
SP - 339
EP - 349
JO - International Journal of Life Cycle Assessment
JF - International Journal of Life Cycle Assessment
IS - 4
ER -