Automated three-dimensional detection and counting of neuron somata

Marcel Oberlaender, Vincent J. Dercksen, Robert Egger, Maria Gensel, Bert Sakmann, Hans-Christian Hege

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

We present a novel approach for automated detection of neuron somata. A three-step processing pipeline is described on the example of confocal image stacks of NeuN-stained neurons from rat somato-sensory cortex. It results in a set of position landmarks, representing the midpoints of all neuron somata. In the first step, foreground and background pixels are identified, resulting in a binary image. It is based on local thresholding and compensates for imaging and staining artifacts. Once this pre-processing guarantees a standard image quality, clusters of touching neurons are separated in the second step, using a marker-based watershed approach. A model-based algorithm completes the pipeline. It assumes a dominant neuron population with Gaussian distributed volumes within one microscopic field of view. Remaining larger objects are hence split or treated as a second neuron type. A variation of the processing pipeline is presented, showing that our method can also be used for co-localization of neurons in multi-channel images. As an example, we process 2-channel stacks of NeuN-stained somata, labeling all neurons, counterstained with GAD67, labeling GABAergic interneurons, using an adapted pre-processing step for the second channel. The automatically generated landmark sets are compared to manually placed counterparts. A comparison yields that the deviation in landmark position is negligible and that the difference between the numbers of manually and automatically counted neurons is less than 4%. In consequence, this novel approach for neuron counting is a reliable and objective alternative to manual detection. © 2009 Elsevier B.V. All rights reserved.
Original languageEnglish
Pages (from-to)147-160
JournalJournal of Neuroscience Methods
Volume180
Issue number1
DOIs
Publication statusPublished - 30 May 2009
Externally publishedYes

Fingerprint

Dive into the research topics of 'Automated three-dimensional detection and counting of neuron somata'. Together they form a unique fingerprint.

Cite this