Automatically eliminating speculative leaks from cryptographic code with blade

Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay Cauligi, Rami Gökhan Klcl, Ranjit Jhala, Dean Tullsen, Deian Stefan

Research output: Contribution to JournalArticleAcademicpeer-review


We introduce Blade, a new approach to automatically and efficiently eliminate speculative leaks from cryptographic code. Blade is built on the insight that to stop leaks via speculative execution, it suffices to cut the dataflow from expressions that speculatively introduce secrets (sources) to those that leak them through the cache (sinks), rather than prohibit speculation altogether. We formalize this insight in a static type system that (1) types each expression as either transient, i.e., possibly containing speculative secrets or as being stable, and (2) prohibits speculative leaks by requiring that all sink expressions are stable. Blade relies on a new abstract primitive, protect, to halt speculation at fine granularity. We formalize and implement protect using existing architectural mechanisms, and show how Blade's type system can automatically synthesize a minimal number of protects to provably eliminate speculative leaks. We implement Blade in the Cranelift WebAssembly compiler and evaluate our approach by repairing several verified, yet vulnerable WebAssembly implementations of cryptographic primitives. We find that Blade can fix existing programs that leak via speculation automatically, without user intervention, and efficiently even when using fences to implement protect.

Original languageEnglish
Article number49
Pages (from-to)1-30
Number of pages30
JournalProceedings of the ACM on Programming Languages
Issue numberPOPL
Early online date4 Jan 2021
Publication statusPublished - Jan 2021


  • Constant-time
  • Spectre
  • Speculative execution
  • Type system


Dive into the research topics of 'Automatically eliminating speculative leaks from cryptographic code with blade'. Together they form a unique fingerprint.

Cite this