Bahamian carbonate platform development in response to sea-level changes and the closure of the Isthmus of Panama

J.G.G. Reijmer, Chr. Betzler, D. Kroon, R. Tiedemann, G.P. Eberli

    Research output: Contribution to JournalArticleAcademicpeer-review

    Abstract

    In this paper we show that the development of the sediment architecture at the leeward toe-of-slope of Great Bahama Bank (Ocean Drilling Project Leg 166, Bahama Transect) during the last 6 Ma is not only a response to sea-level fluctuations, but also to major paleo-oceanographic and climatic changes. A major sequence boundary close to the Miocene/Pliocene boundary (dated at 5.6-5.4 Ma) is interpreted to reflect a major sea-level drop that was followed by a sea-level rise, which led to the re-flooding of the Mediterranean Sea at the end of the Messinian and increasing sea-surface temperatures at Great Bahama Bank. Distinct erosional horizons occurred during the Pliocene (dated at 4.6 and 3.3-3.6 Ma) related to sea-level change and the intensification of the Gulf Stream when the emergence of the Isthmus of Panama reached a critical threshold. The Gulf Stream brings warm, saline and nutrient-poor waters to the Bahamas. Starting at the Early-Late Pliocene boundary at 3.6 Ma this paleo-oceanographic reorganization in combination with enhanced sea-level fluctuations associated with the Late Pliocene main intensification in Northern Hemisphere Glaciation (since 3.2 Ma) led to (1) a gradual change from a ramp-type to a flat-topped type morphology, and (2) a change from a skeletal to a non-skeletal-dominated sedimentary system (mainly peloidal). Increased sea-level fluctuations during the second half of the Pleistocene led to an intensified high stand-shedding depositional pattern within the surrounding basins.
    Original languageEnglish
    JournalInternational Journal of Earth Sciences
    DOIs
    Publication statusPublished - 2001

    Fingerprint

    Dive into the research topics of 'Bahamian carbonate platform development in response to sea-level changes and the closure of the Isthmus of Panama'. Together they form a unique fingerprint.

    Cite this