Biomechanical analysis of drop and countermovement jumps

M. F. Bobbert*, M.T. Mackay, D. Schinkelshoek, P. A. Huijing, G. J. van Ingen Schenau

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review


For 13 subjects the performance of drop jumps from a height of 40 cm (DJ) and of countermovement jumps (CMJ) was analysed and compared. From force plate and cine data biomechanical variables including forces, moments, power output and amount of work done were calculated for hip, knee and ankle joints. In addition, electromyograms were recorded from five muscles in the lower extremity. The results obtained for DJ appeared to depend on jumping style. In a subgroup of subjects making a movement of large amplitude (i. e. bending their hips and knees considerably before pushing off) the push-off phase of DJ closely resembled that of CMJ. In a subgroup of subjects making a movement of small amplitude, however, the duration of the push-off phase was shorter, values for moments and mean power output at the knees and ankles were larger, and the mean EMG activity of m. gastrocnemius was higher in DJ than in CMJ. The findings are attributed to the influences of the rapid pre-stretch of knee extensors and plantar flexors after touch-down in DJ. In both subgroups, larger peak resultant reaction forces were found at the knee and ankle joints, and larger peak forces were calculated for the Achilles tendon in DJ than in CMJ.

Original languageEnglish
Pages (from-to)566-573
Number of pages8
JournalEuropean Journal of Applied Physiology and Occupational Physiology
Issue number6
Publication statusPublished - Feb 1986


  • Biomechanics
  • Countermovement jump
  • Drop jump
  • Electromyography


Dive into the research topics of 'Biomechanical analysis of drop and countermovement jumps'. Together they form a unique fingerprint.

Cite this