TY - JOUR
T1 - Booking horizon forecasting with dynamic updating: A case study of hotel reservation data
AU - Haensel, A.
AU - Koole, G.M.
PY - 2011
Y1 - 2011
N2 - A highly accurate demand forecast is fundamental to the success of every revenue management model. As is often required in both practice and theory, we aim to forecast the accumulated booking curve, as well as the number of reservations expected for each day in the booking horizon. To reduce the dimensionality of this problem, we apply singular value decomposition to the historical booking profiles. The forecast of the remaining part of the booking horizon is dynamically adjusted to the earlier observations using the penalized least squares and historical proportion methods. Our proposed updating procedure considers the correlation and dynamics of bookings both within the booking horizon and between successive product instances. The approach is tested on real hotel reservation data and shows a significant improvement in forecast accuracy. © 2011 International Institute of Forecasters.
AB - A highly accurate demand forecast is fundamental to the success of every revenue management model. As is often required in both practice and theory, we aim to forecast the accumulated booking curve, as well as the number of reservations expected for each day in the booking horizon. To reduce the dimensionality of this problem, we apply singular value decomposition to the historical booking profiles. The forecast of the remaining part of the booking horizon is dynamically adjusted to the earlier observations using the penalized least squares and historical proportion methods. Our proposed updating procedure considers the correlation and dynamics of bookings both within the booking horizon and between successive product instances. The approach is tested on real hotel reservation data and shows a significant improvement in forecast accuracy. © 2011 International Institute of Forecasters.
U2 - 10.1016/j.ijforecast.2010.10.004
DO - 10.1016/j.ijforecast.2010.10.004
M3 - Article
VL - 27
SP - 942
EP - 960
JO - International Journal of Forecasting
JF - International Journal of Forecasting
SN - 0169-2070
ER -