Booking horizon forecasting with dynamic updating: A case study of hotel reservation data

A. Haensel, G.M. Koole

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

A highly accurate demand forecast is fundamental to the success of every revenue management model. As is often required in both practice and theory, we aim to forecast the accumulated booking curve, as well as the number of reservations expected for each day in the booking horizon. To reduce the dimensionality of this problem, we apply singular value decomposition to the historical booking profiles. The forecast of the remaining part of the booking horizon is dynamically adjusted to the earlier observations using the penalized least squares and historical proportion methods. Our proposed updating procedure considers the correlation and dynamics of bookings both within the booking horizon and between successive product instances. The approach is tested on real hotel reservation data and shows a significant improvement in forecast accuracy. © 2011 International Institute of Forecasters.
Original languageEnglish
Pages (from-to)942-960
JournalInternational Journal of Forecasting
Volume27
DOIs
Publication statusPublished - 2011

Fingerprint

Dive into the research topics of 'Booking horizon forecasting with dynamic updating: A case study of hotel reservation data'. Together they form a unique fingerprint.

Cite this