Brain-derived neurotrophic factor signaling in the HVC is required for testosterone-induced song of female canaries

T.E. Hartog, F. Dittrich, A.W. Pieneman, R.F. Jansen, C. Franckl-Vilches, V. Lessmann, C. Lilliehook, S.A. Goldman, M. Gahr

Research output: Contribution to JournalArticleAcademicpeer-review

177 Downloads (Pure)

Abstract

Testosterone-induced singing in songbirds is thought to involve testosterone-dependent morphological changes that include angiogenesis and neuronal recruitment into the HVC, a central part of the song control circuit. Previous work showed that testosterone induces the production of vascular endothelial growth factor (VEGF) and its receptor (VEGFR2 tyrosine kinase), which in turn leads to an upregulation of brain-derived neurotrophic factor (BDNF) production in HVC endothelial cells. Here we report for the first time that systemic inhibition of the VEGFR2 tyrosine kinase is sufficient to block testosterone-induced song in adult female canaries, despite sustained androgen exposure and the persistence of the effects of testosterone on HVC morphology. Expression of exogenous BDNF in HVC, induced locally by in situ transfection, reversed the VEGFR2 inhibition-mediated blockade of song development, thereby restoring the behavioral phenotype associated with androgen-induced song. The VEGFR2-inhibited, BDNF-treated females developed elaborate malelike song that included large syllable repertoires and high syllable repetition rates, features known to attract females. Importantly, although functionally competent new neurons were recruited to HVC after testosterone treatment, the time course of neuronal addition appeared to follow BDNF-induced song development. These findings indicate that testosterone-associated VEGFR2 activity is required for androgen-induced song in adult songbirds and that the behavioral effects of VEGFR2 inhibition can be rescued by BDNF within the adult HVC. Copyright © 2009 Society for Neuroscience.
Original languageEnglish
Pages (from-to)15511-15519
Number of pages9
JournalThe Journal of Neuroscience
Volume29
Issue number49
DOIs
Publication statusPublished - 2009

Fingerprint

Dive into the research topics of 'Brain-derived neurotrophic factor signaling in the HVC is required for testosterone-induced song of female canaries'. Together they form a unique fingerprint.

Cite this