Branched-chain alpha-keto acid catabolism via the gene products of the bkd operon in Enterococcus faecalis: a ne, secreted metabolite serving as a temporary redox sink.

D.E. Ward, C.C. van der Weijden, M.J. van der Merwe, H.V. Westerhoff, A. Claiborne, J.L. Snoep

    Research output: Contribution to JournalArticleAcademicpeer-review

    Abstract

    Recently the bkd gene cluster from Enterococcus faecalis was sequenced, and it was shown that the gene products constitute a pathway for the catabolism of branched-chain α-keto acids. We have now investigated the regulation and physiological role of this pathway. Primer extension analysis identified the presence of a single promoter upstream of the bkd gene cluster. Furthermore, a putative catabolite-responsive element was identified in the promoter region, indicative of catabolite repression. Consistent with this was the observation that expression of the bkd gene cluster is repressed in the presence of glucose, fructose, and lactose. It is proposed that the conversion of the branched-chain α-keto acids to the corresponding free acids results in the formation of ATP via substrate level phosphorylation. The utilization of the α-keto acids resulted in a marked increase of biomass, equivalent to a net production of 0.5 mol of ATP per mol of α-keto acid metabolized. The pathway was active under aerobic as well as anaerobic conditions. However, under anaerobic conditions the presence of a suitable electron acceptor to regenerate NAD
    Original languageEnglish
    Pages (from-to)3239-3246
    Number of pages8
    JournalJournal of Bacteriology
    Volume182
    DOIs
    Publication statusPublished - 2000

    Fingerprint

    Dive into the research topics of 'Branched-chain alpha-keto acid catabolism via the gene products of the bkd operon in Enterococcus faecalis: a ne, secreted metabolite serving as a temporary redox sink.'. Together they form a unique fingerprint.

    Cite this