Burned area and carbon emissions across northwestern boreal North America from 2001-2019

Stefano Potter*, Sol Cooperdock, Sander Veraverbeke, Xanthe Walker, Michelle C. Mack, Scott J. Goetz, Jennifer Baltzer, Laura Bourgeau-Chavez, Arden Burrell, Catherine Dieleman, Nancy French, Stijn Hantson, Elizabeth E. Hoy, Liza Jenkins, Jill F. Johnstone, Evan S. Kane, Susan M. Natali, James T. Randerson, Merritt R. Turetsky, Ellen WhitmanElizabeth Wiggins, Brendan M. Rogers

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Fire is the dominant disturbance agent in Alaskan and Canadian boreal ecosystems and releases large amounts of carbon into the atmosphere. Burned area and carbon emissions have been increasing with climate change, which have the potential to alter the carbon balance and shift the region from a historic sink to a source. It is therefore critically important to track the spatiotemporal changes in burned area and fire carbon emissions over time. Here we developed a new burned-area detection algorithm between 2001-2019 across Alaska and Canada at 500 m (meters) resolution that utilizes finer-scale 30 m Landsat imagery to account for land cover unsuitable for burning. This method strictly balances omission and commission errors at 500 m to derive accurate landscape- and regional-scale burned-area estimates. Using this new burned-area product, we developed statistical models to predict burn depth and carbon combustion for the same period within the NASA Arctic-Boreal Vulnerability Experiment (ABoVE) core and extended domain. Statistical models were constrained using a database of field observations across the domain and were related to a variety of response variables including remotely sensed indicators of fire severity, fire weather indices, local climate, soils, and topographic indicators. The burn depth and aboveground combustion models performed best, with poorer performance for belowground combustion. We estimate 2.37×106 ha (2.37 Mha) burned annually between 2001-2019 over the ABoVE domain (2.87 Mha across all of Alaska and Canada), emitting 79.3 ± 27.96 Tg (±1 standard deviation) of carbon (C) per year, with a mean combustion rate of 3.13 ± 1.17 kg C m-2. Mean combustion and burn depth displayed a general gradient of higher severity in the northwestern portion of the domain to lower severity in the south and east. We also found larger-fire years and later-season burning were generally associated with greater mean combustion. Our estimates are generally consistent with previous efforts to quantify burned area, fire carbon emissions, and their drivers in regions within boreal North America; however, we generally estimate higher burned area and carbon emissions due to our use of Landsat imagery, greater availability of field observations, and improvements in modeling. The burned area and combustion datasets described here (the ABoVE Fire Emissions Database, or ABoVE-FED) can be used for local- to continental-scale applications of boreal fire science.

Original languageEnglish
Pages (from-to)2785-2804
Number of pages20
JournalBiogeosciences
Volume20
Issue number13
Early online date14 Jul 2023
DOIs
Publication statusPublished - 2023

Bibliographical note

Funding Information:
This work was funded by the National Aeronautics and Space Administration (NASA) Arctic–Boreal Vulnerability Experiment (ABoVE grants NNX15AU56A and NX15AT71A to Brendan M. Rogers and Michelle C. Mack and grants NNX15AT83A and 80NSSC19M0107 to Laura Bourgeau-Chavez, Nancy H. French, and Liza Jenkins), the Gordon and Betty Moore Foundation (grant no. 8414), the Woodwell Climate Research Center's Fund for Climate Solutions, and the Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP contract RC18-1183). Sander Veraverbeke was supported by the Dutch Research Council through Vidi grant 016.Vidi.189.070 and by the European Research Council under the European Union's Horizon 2020 research and innovation program (grant agreement no. 101000987). In-kind support was provided through Bonanza Creek LTER with funding from the National Science Foundation (DEB-1636476) and the USDA Forest Service, Pacific Northwest Research Station (RJVA-PNW-01-JV-11261952-231).

Publisher Copyright:
© 2023 Stefano Potter et al.

Funding

This work was funded by the National Aeronautics and Space Administration (NASA) Arctic–Boreal Vulnerability Experiment (ABoVE grants NNX15AU56A and NX15AT71A to Brendan M. Rogers and Michelle C. Mack and grants NNX15AT83A and 80NSSC19M0107 to Laura Bourgeau-Chavez, Nancy H. French, and Liza Jenkins), the Gordon and Betty Moore Foundation (grant no. 8414), the Woodwell Climate Research Center's Fund for Climate Solutions, and the Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP contract RC18-1183). Sander Veraverbeke was supported by the Dutch Research Council through Vidi grant 016.Vidi.189.070 and by the European Research Council under the European Union's Horizon 2020 research and innovation program (grant agreement no. 101000987). In-kind support was provided through Bonanza Creek LTER with funding from the National Science Foundation (DEB-1636476) and the USDA Forest Service, Pacific Northwest Research Station (RJVA-PNW-01-JV-11261952-231).

FundersFunder number
Bonanza Creek LTER
Woodwell Climate Research Center
National Science FoundationDEB-1636476
National Science Foundation
U.S. Department of Defense
National Aeronautics and Space AdministrationNX15AT71A, NNX15AT83A, 80NSSC19M0107, NNX15AU56A
National Aeronautics and Space Administration
Gordon and Betty Moore Foundation8414
Gordon and Betty Moore Foundation
U.S. Forest Service
Strategic Environmental Research and Development ProgramRC18-1183
Strategic Environmental Research and Development Program
Pacific Northwest Research StationRJVA-PNW-01-JV-11261952-231
Pacific Northwest Research Station
European Research Council
Nederlandse Organisatie voor Wetenschappelijk Onderzoek016
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Horizon 2020101000987
Horizon 2020

    Fingerprint

    Dive into the research topics of 'Burned area and carbon emissions across northwestern boreal North America from 2001-2019'. Together they form a unique fingerprint.

    Cite this