CASCADE-The Circum-Arctic Sediment CArbon DatabasE

Jannik Martens, Evgeny Romankevich, Igor Semiletov, Birgit Wild, Bart Van Dongen, Jorien Vonk, Tommaso Tesi, Natalia Shakhova, Oleg V. Dudarev, Denis Kosmach, Alexander Vetrov, Leopold Lobkovsky, Nikolay Belyaev, Robie W. Macdonald, Anna J. Pieńkowski, Timothy I. Eglinton, Negar Haghipour, Salve Dahle, Michael L. Carroll, Emmelie K.L. ÅströmJacqueline M. Grebmeier, Lee W. Cooper, Göran Possnert, Örjan Gustafsson*

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Biogeochemical cycling in the semi-enclosed Arctic Ocean is strongly influenced by land ocean transport of carbon and other elements and is vulnerable to environmental and climate changes. Sediments of the Arctic Ocean are an important part of biogeochemical cycling in the Arctic and provide the opportunity to study present and historical input and the fate of organic matter (e.g., through permafrost thawing). Comprehensive sedimentary records are required to compare differences between the Arctic regions and to study Arctic biogeochemical budgets. To this end, the Circum-Arctic Sediment CArbon DatabasE (CASCADE) was established to curate data primarily on concentrations of organic carbon (OC) and OC isotopes (_13C, 114C) yet also on total N (TN) as well as terrigenous biomarkers and other sediment geochemical and physical properties. This new database builds on the published literature and earlier unpublished records through an extensive international community collaboration. This paper describes the establishment, structure and current status of CASCADE. The first public version includes OC concentrations in surface sediments at 4244 oceanographic stations including 2317 with TN con-centrations, 1555 with _13C-OC values and 268 with 114C-OC values and 653 records with quantified terrigenous biomarkers (high-molecular-weight n-Alkanes, n-Alkanoic acids and lignin phenols). CASCADE also includes data from 326 sediment cores, retrieved by shallow box or multi-coring, deep gravity/piston coring, or sea-bottom drilling. The comprehensive dataset reveals large-scale features of both OC content and OC sources between the shelf sea recipients. This offers insight into release of pre-Aged terrigenous OC to the East Siberian Arctic shelf and younger terrigenous OC to the Kara Sea. Circum-Arctic sediments thereby reveal patterns of terrestrial OC remobilization and provide clues about thawing of permafrost. CASCADE enables synoptic analysis of OC in Arctic Ocean sediments and facilitates a wide array of future empirical and modeling studies of the Arctic carbon cycle. The database is openly and freely available online (https://doi.org/10.17043/cascade; Martens et al., 2021), is provided in various machine-readable data formats (data tables, GIS shapefile, GIS raster), and also provides ways for contributing data for future CASCADE versions. We will continuously update CASCADE with newly published and contributed data over the foreseeable future as part of the database management of the Bolin Centre for Climate Research at Stockholm University.

Original languageEnglish
Pages (from-to)2561-2572
Number of pages12
JournalEarth System Science Data
Volume13
Issue number6
Early online date8 Jun 2021
DOIs
Publication statusPublished - Jun 2021

Bibliographical note

Funding Information:
Financial support. Development of CASCADE was supported by the European Research Council (ERC Advanced Grant CC- TOP 695331 to Örjan Gustafsson), the EU H2020-funded project Nunataryuk (grant 773421), and the Swedish Research Council (grant 2017-01601). Field campaigns to obtain gap-filling samples were supported by the Knut and Alice Wallenberg Foundation (KAW contract 2011.0027 to Örjan Gustafsson) as part of the SWERUS-C3 program, as well as by the Russian Science Foundation (grant 21-77-30001 to Igor Semiletov) and the Russian Ministry of Science and Higher Education (grant 0211-2021-0010 to Pacific Oceanological Institute, Vladivostok). Furthermore, this study was supported by the assignment of the Russian Academy of Sciences (grant 0128-2021-0005) and the Russian Science Foundation (grant 18-05-60214) to the Shirshov Institute of Oceanology (Evgeny Romankevich, Alexander Vetrov). The collection of sample material in the Barents Sea was supported by the Research Council of Norway (grant 228107 to Michael L. Carroll; grant 223259) and VISTA (grant 6172 to Emmelie K. L. Åström). Gap-filling samples from the Canadian Arctic were supported by the Research Council of Canada (NSERC Discovery Grant RGPIN-2016-05457 to Anna J. Pieńkowski). Bart van Dongen was supported by an NERC research grant (NE/I024798/1) and Jorien Vonk was supported by the Dutch-NWO (Veni grant 863.12.004).

Publisher Copyright:
© Copyright:

Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.

Fingerprint

Dive into the research topics of 'CASCADE-The Circum-Arctic Sediment CArbon DatabasE'. Together they form a unique fingerprint.

Cite this