Changes in soluble metal concentrations induced by variable water table levels as response to liming and Phragmites australis growth in metal-polluted wetland soils: Management effectiveness

M.N. Gonzalez Alcaraz, C.A.M. van Gestel

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

This study aimed to assess the effectiveness of liming and Phragmites australis growth for the management of metal-polluted wetland soils under fluctuating water table levels. Soil columns (20 cm in diameter and 60 cm high) were constructed with two soil types (pH ~ 6.4 and pH ~ 3.1) and four treatments were assayed: with/without liming and with/without vegetation. The pH, Eh, EC, WSOC and soluble metals (Cd, Cu, Mn, Pb, Zn) were monitored at three depths: 5 (never under water), 30 (alternating flooding-drying conditions), and 55 (always under water) cm. In the slightly acidic soil liming decreased Cd, Mn and Zn soluble concentrations regardless of the hydric regime and the presence of Phragmites. However, it contributed to Cu and Pb mobilization under permanent flooding conditions (55 cm depth). In the non-liming treatments the presence of vegetation hindered the drop of Eh in the deepest 55 cm and contributed to maintain higher Cd solubility. In the strongly acidic soil liming decreased Cu, Cd, Pb and Zn soluble concentrations but not Mn. In this soil the presence of Phragmites contributed to higher soluble metal concentrations at 5 cm depth due to the capillary upward movement of water with solutes (salts and metals). Hence, it is not possible to establish an unique management strategy for metal-polluted hydric soils since the effectiveness of the remediation techniques will depend on the target metal, soil type, water level regime and presence/absence of vegetation.
Original languageEnglish
Pages (from-to)20-28
JournalGeoderma
Volume289
DOIs
Publication statusPublished - 2016

Fingerprint

wetland soils
Phragmites australis
soil management
liming
polluted soils
water table
wetland
metals
metal
Phragmites
soil
acid soils
vegetation
soil type
soil types
flooding
hydric soils
water
remediation
soil column

Cite this

@article{dd0ae641d03446d2a9aaaa6f1e492ee5,
title = "Changes in soluble metal concentrations induced by variable water table levels as response to liming and Phragmites australis growth in metal-polluted wetland soils: Management effectiveness",
abstract = "This study aimed to assess the effectiveness of liming and Phragmites australis growth for the management of metal-polluted wetland soils under fluctuating water table levels. Soil columns (20 cm in diameter and 60 cm high) were constructed with two soil types (pH ~ 6.4 and pH ~ 3.1) and four treatments were assayed: with/without liming and with/without vegetation. The pH, Eh, EC, WSOC and soluble metals (Cd, Cu, Mn, Pb, Zn) were monitored at three depths: 5 (never under water), 30 (alternating flooding-drying conditions), and 55 (always under water) cm. In the slightly acidic soil liming decreased Cd, Mn and Zn soluble concentrations regardless of the hydric regime and the presence of Phragmites. However, it contributed to Cu and Pb mobilization under permanent flooding conditions (55 cm depth). In the non-liming treatments the presence of vegetation hindered the drop of Eh in the deepest 55 cm and contributed to maintain higher Cd solubility. In the strongly acidic soil liming decreased Cu, Cd, Pb and Zn soluble concentrations but not Mn. In this soil the presence of Phragmites contributed to higher soluble metal concentrations at 5 cm depth due to the capillary upward movement of water with solutes (salts and metals). Hence, it is not possible to establish an unique management strategy for metal-polluted hydric soils since the effectiveness of the remediation techniques will depend on the target metal, soil type, water level regime and presence/absence of vegetation.",
author = "{Gonzalez Alcaraz}, M.N. and {van Gestel}, C.A.M.",
year = "2016",
doi = "10.1016/j.geoderma.2016.11.019",
language = "English",
volume = "289",
pages = "20--28",
journal = "Geoderma",
issn = "0016-7061",
publisher = "Elsevier",

}

TY - JOUR

T1 - Changes in soluble metal concentrations induced by variable water table levels as response to liming and Phragmites australis growth in metal-polluted wetland soils: Management effectiveness

AU - Gonzalez Alcaraz, M.N.

AU - van Gestel, C.A.M.

PY - 2016

Y1 - 2016

N2 - This study aimed to assess the effectiveness of liming and Phragmites australis growth for the management of metal-polluted wetland soils under fluctuating water table levels. Soil columns (20 cm in diameter and 60 cm high) were constructed with two soil types (pH ~ 6.4 and pH ~ 3.1) and four treatments were assayed: with/without liming and with/without vegetation. The pH, Eh, EC, WSOC and soluble metals (Cd, Cu, Mn, Pb, Zn) were monitored at three depths: 5 (never under water), 30 (alternating flooding-drying conditions), and 55 (always under water) cm. In the slightly acidic soil liming decreased Cd, Mn and Zn soluble concentrations regardless of the hydric regime and the presence of Phragmites. However, it contributed to Cu and Pb mobilization under permanent flooding conditions (55 cm depth). In the non-liming treatments the presence of vegetation hindered the drop of Eh in the deepest 55 cm and contributed to maintain higher Cd solubility. In the strongly acidic soil liming decreased Cu, Cd, Pb and Zn soluble concentrations but not Mn. In this soil the presence of Phragmites contributed to higher soluble metal concentrations at 5 cm depth due to the capillary upward movement of water with solutes (salts and metals). Hence, it is not possible to establish an unique management strategy for metal-polluted hydric soils since the effectiveness of the remediation techniques will depend on the target metal, soil type, water level regime and presence/absence of vegetation.

AB - This study aimed to assess the effectiveness of liming and Phragmites australis growth for the management of metal-polluted wetland soils under fluctuating water table levels. Soil columns (20 cm in diameter and 60 cm high) were constructed with two soil types (pH ~ 6.4 and pH ~ 3.1) and four treatments were assayed: with/without liming and with/without vegetation. The pH, Eh, EC, WSOC and soluble metals (Cd, Cu, Mn, Pb, Zn) were monitored at three depths: 5 (never under water), 30 (alternating flooding-drying conditions), and 55 (always under water) cm. In the slightly acidic soil liming decreased Cd, Mn and Zn soluble concentrations regardless of the hydric regime and the presence of Phragmites. However, it contributed to Cu and Pb mobilization under permanent flooding conditions (55 cm depth). In the non-liming treatments the presence of vegetation hindered the drop of Eh in the deepest 55 cm and contributed to maintain higher Cd solubility. In the strongly acidic soil liming decreased Cu, Cd, Pb and Zn soluble concentrations but not Mn. In this soil the presence of Phragmites contributed to higher soluble metal concentrations at 5 cm depth due to the capillary upward movement of water with solutes (salts and metals). Hence, it is not possible to establish an unique management strategy for metal-polluted hydric soils since the effectiveness of the remediation techniques will depend on the target metal, soil type, water level regime and presence/absence of vegetation.

U2 - 10.1016/j.geoderma.2016.11.019

DO - 10.1016/j.geoderma.2016.11.019

M3 - Article

VL - 289

SP - 20

EP - 28

JO - Geoderma

JF - Geoderma

SN - 0016-7061

ER -