Climatic controls of decomposition drive the global biogeography of forest-tree symbioses

GFBI consortium

Research output: Contribution to JournalLetterAcademicpeer-review

Abstract

The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools 1,2 , sequester carbon 3,4 and withstand the effects of climate change 5,6 . Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species 7 , constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species.

Original languageEnglish
Pages (from-to)404-408
Number of pages5
JournalNature
Volume569
Issue number7756
DOIs
Publication statusPublished - 16 May 2019

Fingerprint

Symbiosis
Climate
Ecosystem
Soil
Plant Dispersal
Cold Climate
Climate Change
Forests
Fungi
Nitrogen
Carbon
Databases
Food
Equipment and Supplies
Temperature

Cite this

GFBI consortium. / Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. In: Nature. 2019 ; Vol. 569, No. 7756. pp. 404-408.
@article{15154809f10547278b8cb46414c7b2ff,
title = "Climatic controls of decomposition drive the global biogeography of forest-tree symbioses",
abstract = "The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools 1,2 , sequester carbon 3,4 and withstand the effects of climate change 5,6 . Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2{\%} of all plant species 7 , constitute approximately 60{\%} of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species.",
author = "Steidinger, {B. S.} and Crowther, {T. W.} and J. Liang and {Van Nuland}, {M. E.} and Werner, {G. D.A.} and Reich, {P. B.} and G. Nabuurs and S. de-Miguel and M. Zhou and N. Picard and B. Herault and X. Zhao and C. Zhang and D. Routh and Peay, {K. G.} and Meinrad Abegg and Adou Yao, {C.  Yves} and Giorgio Alberti and Angelica Almeyda Zambrano and Esteban Alvarez-Davila and Patricia Alvarez-Loayza and Alves, {Luciana F.} and Christian Ammer and Clara Ant{\'o}n-Fern{\'a}ndez and Alejandro Araujo-Murakami and Luzmila Arroyo and Valerio Avitabile and Gerardo Aymard and Timothy Baker and Radomir Bałazy and Olaf Banki and Jorcely Barroso and Meredith Bastian and Bastin, {Jean Francois} and Luca Birigazzi and Philippe Birnbaum and Robert Bitariho and Pascal Boeckx and Frans Bongers and Olivier Bouriaud and Brancalion, {Pedro H H.S.} and Susanne Brandl and Brearley, {Francis Q.} and Roel Brienen and Eben Broadbent and Helge Bruelheide and Filippo Bussotti and Roberto Cazzolla Gatti and Ricardo Cesar and Goran Cesljar and Robin Chazdon and Chen, {Han Y.H.} and Chelsea Chisholm and Emil Cienciala and Clark, {Connie J.} and David Clark and Gabriel Colletta and Richard Condit and David Coomes and Fernando Cornejo Valverde and Corral-Rivas, {Jose J.} and Philip Crim and Jonathan Cumming and Selvadurai Dayanandan and {de Gasper}, {Andr{\'e} L.} and Mathieu Decuyper and G{\'e}raldine Derroire and Ben DeVries and Ilija Djordjevic and Amaral I{\^e}da and Aur{\'e}lie Dourdain and Obiang, {Nestor Laurier Engone} and Brian Enquist and Teresa Eyre and Fandohan, {Adand{\'e} Belarmain} and Fayle, {Tom M.} and Feldpausch, {Ted R.} and Leena Fin{\'e}r and Markus Fischer and Christine Fletcher and Jonas Fridman and Lorenzo Frizzera and Gamarra, {Javier G.P.} and Damiano Gianelle and Glick, {Henry B.} and David Harris and Andrew Hector and Andreas Hemp and Geerten Hengeveld and John Herbohn and Martin Herold and Annika Hillers and {Honorio Coronado}, {Eur{\'i}dice N.} and Markus Huber and Cang Hui and Hyunkook Cho and Thomas Ibanez and Ilbin Jung and Nobuo Imai and Jagodzinski, {Andrzej M.} and Bogdan Jaroszewicz and Vivian Johannsen and Joly, {Carlos A.} and Tommaso Jucker and Viktor Karminov and Kuswata Kartawinata and Elizabeth Kearsley and David Kenfack and Deborah Kennard and Sebastian Kepfer-Rojas and Gunnar Keppel and Khan, {Mohammed Latif} and Timothy Killeen and Kim, {Hyun Seok} and Kanehiro Kitayama and Michael K{\"o}hl and Henn Korjus and Florian Kraxner and Diana Laarmann and Mait Lang and Simon Lewis and Huicui Lu and Natalia Lukina and Brian Maitner and Yadvinder Malhi and Eric Marcon and Marimon, {Beatriz Schwantes S.} and Marimon-Junior, {Ben Hur} and Marshall, {Andrew Robert} and Emanuel Martin and Olga Martynenko and Meave, {Jorge A.} and Omar Melo-Cruz and Casimiro Mendoza and Cory Merow and Abel Monteagudo Mendoza and Vanessa Moreno and Mukul, {Sharif A.} and Philip Mundhenk and Nava-Miranda, {Maria G.} and David Neill and Victor Neldner and Radovan Nevenic and Michael Ngugi and Pascal Niklaus and Jacek Oleksyn and Petr Ontikov and Edgar Ortiz-Malavasi and Yude Pan and Alain Paquette and Alexander Parada-Gutierrez and Elena Parfenova and Minjee Park and Marc Parren and Narayanaswamy Parthasarathy and Peri, {Pablo L.} and Sebastian Pfautsch and Oliver Phillips and Piedade, {Maria Teresa} and Daniel Piotto and Pitman, {Nigel C.A.} and Irina Polo and Lourens Poorter and Poulsen, {Axel Dalberg} and Poulsen, {John R.} and Hans Pretzsch and Freddy Ramirez Arevalo and Zorayda Restrepo-Correa and Mirco Rodeghiero and Samir Rolim and Anand Roopsind and Francesco Rovero and Ervan Rutishauser and Purabi Saikia and Philippe Saner and Peter Schall and Schelhaas, {Mart Jan} and Dmitry Schepaschenko and Michael Scherer-Lorenzen and Bernhard Schmid and Jochen Sch{\"o}ngart and Eric Searle and Vladim{\'i}r Seben and Serra-Diaz, {Josep M.} and Christian Salas-Eljatib and Douglas Sheil and Anatoly Shvidenko and Javier Silva-Espejo and Marcos Silveira and James Singh and Plinio Sist and Ferry Slik and Bonaventure Sonk{\'e} and Souza, {Alexandre F.} and Krzysztof Stereńczak and Svenning, {Jens Christian} and Miroslav Svoboda and Natalia Targhetta and Nadja Tchebakova and Steege, {Hans ter} and Raquel Thomas and Elena Tikhonova and Peter Umunay and Vladimir Usoltsev and Fernando Valladares and {van der Plas}, Fons and {Van Do}, Tran and Rodolfo Vasquez Martinez and Hans Verbeeck and Helder Viana and Simone Vieira and {von Gadow}, Klaus and Wang, {Hua Feng} and James Watson and Bertil Westerlund and Susan Wiser and Florian Wittmann and Verginia Wortel and Roderick Zagt and Tomasz Zawila-Niedzwiecki and Zhu, {Zhi Xin} and Zo-Bi, {Irie Casimir} and {GFBI consortium}",
year = "2019",
month = "5",
day = "16",
doi = "10.1038/s41586-019-1128-0",
language = "English",
volume = "569",
pages = "404--408",
journal = "Nature",
issn = "0028-0836",
publisher = "Nature Publishing Group",
number = "7756",

}

Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. / GFBI consortium.

In: Nature, Vol. 569, No. 7756, 16.05.2019, p. 404-408.

Research output: Contribution to JournalLetterAcademicpeer-review

TY - JOUR

T1 - Climatic controls of decomposition drive the global biogeography of forest-tree symbioses

AU - Steidinger, B. S.

AU - Crowther, T. W.

AU - Liang, J.

AU - Van Nuland, M. E.

AU - Werner, G. D.A.

AU - Reich, P. B.

AU - Nabuurs, G.

AU - de-Miguel, S.

AU - Zhou, M.

AU - Picard, N.

AU - Herault, B.

AU - Zhao, X.

AU - Zhang, C.

AU - Routh, D.

AU - Peay, K. G.

AU - Abegg, Meinrad

AU - Adou Yao, C.  Yves

AU - Alberti, Giorgio

AU - Almeyda Zambrano, Angelica

AU - Alvarez-Davila, Esteban

AU - Alvarez-Loayza, Patricia

AU - Alves, Luciana F.

AU - Ammer, Christian

AU - Antón-Fernández, Clara

AU - Araujo-Murakami, Alejandro

AU - Arroyo, Luzmila

AU - Avitabile, Valerio

AU - Aymard, Gerardo

AU - Baker, Timothy

AU - Bałazy, Radomir

AU - Banki, Olaf

AU - Barroso, Jorcely

AU - Bastian, Meredith

AU - Bastin, Jean Francois

AU - Birigazzi, Luca

AU - Birnbaum, Philippe

AU - Bitariho, Robert

AU - Boeckx, Pascal

AU - Bongers, Frans

AU - Bouriaud, Olivier

AU - Brancalion, Pedro H H.S.

AU - Brandl, Susanne

AU - Brearley, Francis Q.

AU - Brienen, Roel

AU - Broadbent, Eben

AU - Bruelheide, Helge

AU - Bussotti, Filippo

AU - Cazzolla Gatti, Roberto

AU - Cesar, Ricardo

AU - Cesljar, Goran

AU - Chazdon, Robin

AU - Chen, Han Y.H.

AU - Chisholm, Chelsea

AU - Cienciala, Emil

AU - Clark, Connie J.

AU - Clark, David

AU - Colletta, Gabriel

AU - Condit, Richard

AU - Coomes, David

AU - Cornejo Valverde, Fernando

AU - Corral-Rivas, Jose J.

AU - Crim, Philip

AU - Cumming, Jonathan

AU - Dayanandan, Selvadurai

AU - de Gasper, André L.

AU - Decuyper, Mathieu

AU - Derroire, Géraldine

AU - DeVries, Ben

AU - Djordjevic, Ilija

AU - Iêda, Amaral

AU - Dourdain, Aurélie

AU - Obiang, Nestor Laurier Engone

AU - Enquist, Brian

AU - Eyre, Teresa

AU - Fandohan, Adandé Belarmain

AU - Fayle, Tom M.

AU - Feldpausch, Ted R.

AU - Finér, Leena

AU - Fischer, Markus

AU - Fletcher, Christine

AU - Fridman, Jonas

AU - Frizzera, Lorenzo

AU - Gamarra, Javier G.P.

AU - Gianelle, Damiano

AU - Glick, Henry B.

AU - Harris, David

AU - Hector, Andrew

AU - Hemp, Andreas

AU - Hengeveld, Geerten

AU - Herbohn, John

AU - Herold, Martin

AU - Hillers, Annika

AU - Honorio Coronado, Eurídice N.

AU - Huber, Markus

AU - Hui, Cang

AU - Cho, Hyunkook

AU - Ibanez, Thomas

AU - Jung, Ilbin

AU - Imai, Nobuo

AU - Jagodzinski, Andrzej M.

AU - Jaroszewicz, Bogdan

AU - Johannsen, Vivian

AU - Joly, Carlos A.

AU - Jucker, Tommaso

AU - Karminov, Viktor

AU - Kartawinata, Kuswata

AU - Kearsley, Elizabeth

AU - Kenfack, David

AU - Kennard, Deborah

AU - Kepfer-Rojas, Sebastian

AU - Keppel, Gunnar

AU - Khan, Mohammed Latif

AU - Killeen, Timothy

AU - Kim, Hyun Seok

AU - Kitayama, Kanehiro

AU - Köhl, Michael

AU - Korjus, Henn

AU - Kraxner, Florian

AU - Laarmann, Diana

AU - Lang, Mait

AU - Lewis, Simon

AU - Lu, Huicui

AU - Lukina, Natalia

AU - Maitner, Brian

AU - Malhi, Yadvinder

AU - Marcon, Eric

AU - Marimon, Beatriz Schwantes S.

AU - Marimon-Junior, Ben Hur

AU - Marshall, Andrew Robert

AU - Martin, Emanuel

AU - Martynenko, Olga

AU - Meave, Jorge A.

AU - Melo-Cruz, Omar

AU - Mendoza, Casimiro

AU - Merow, Cory

AU - Monteagudo Mendoza, Abel

AU - Moreno, Vanessa

AU - Mukul, Sharif A.

AU - Mundhenk, Philip

AU - Nava-Miranda, Maria G.

AU - Neill, David

AU - Neldner, Victor

AU - Nevenic, Radovan

AU - Ngugi, Michael

AU - Niklaus, Pascal

AU - Oleksyn, Jacek

AU - Ontikov, Petr

AU - Ortiz-Malavasi, Edgar

AU - Pan, Yude

AU - Paquette, Alain

AU - Parada-Gutierrez, Alexander

AU - Parfenova, Elena

AU - Park, Minjee

AU - Parren, Marc

AU - Parthasarathy, Narayanaswamy

AU - Peri, Pablo L.

AU - Pfautsch, Sebastian

AU - Phillips, Oliver

AU - Piedade, Maria Teresa

AU - Piotto, Daniel

AU - Pitman, Nigel C.A.

AU - Polo, Irina

AU - Poorter, Lourens

AU - Poulsen, Axel Dalberg

AU - Poulsen, John R.

AU - Pretzsch, Hans

AU - Ramirez Arevalo, Freddy

AU - Restrepo-Correa, Zorayda

AU - Rodeghiero, Mirco

AU - Rolim, Samir

AU - Roopsind, Anand

AU - Rovero, Francesco

AU - Rutishauser, Ervan

AU - Saikia, Purabi

AU - Saner, Philippe

AU - Schall, Peter

AU - Schelhaas, Mart Jan

AU - Schepaschenko, Dmitry

AU - Scherer-Lorenzen, Michael

AU - Schmid, Bernhard

AU - Schöngart, Jochen

AU - Searle, Eric

AU - Seben, Vladimír

AU - Serra-Diaz, Josep M.

AU - Salas-Eljatib, Christian

AU - Sheil, Douglas

AU - Shvidenko, Anatoly

AU - Silva-Espejo, Javier

AU - Silveira, Marcos

AU - Singh, James

AU - Sist, Plinio

AU - Slik, Ferry

AU - Sonké, Bonaventure

AU - Souza, Alexandre F.

AU - Stereńczak, Krzysztof

AU - Svenning, Jens Christian

AU - Svoboda, Miroslav

AU - Targhetta, Natalia

AU - Tchebakova, Nadja

AU - Steege, Hans ter

AU - Thomas, Raquel

AU - Tikhonova, Elena

AU - Umunay, Peter

AU - Usoltsev, Vladimir

AU - Valladares, Fernando

AU - van der Plas, Fons

AU - Van Do, Tran

AU - Vasquez Martinez, Rodolfo

AU - Verbeeck, Hans

AU - Viana, Helder

AU - Vieira, Simone

AU - von Gadow, Klaus

AU - Wang, Hua Feng

AU - Watson, James

AU - Westerlund, Bertil

AU - Wiser, Susan

AU - Wittmann, Florian

AU - Wortel, Verginia

AU - Zagt, Roderick

AU - Zawila-Niedzwiecki, Tomasz

AU - Zhu, Zhi Xin

AU - Zo-Bi, Irie Casimir

AU - GFBI consortium

PY - 2019/5/16

Y1 - 2019/5/16

N2 - The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools 1,2 , sequester carbon 3,4 and withstand the effects of climate change 5,6 . Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species 7 , constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species.

AB - The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools 1,2 , sequester carbon 3,4 and withstand the effects of climate change 5,6 . Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species 7 , constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species.

UR - http://www.scopus.com/inward/record.url?scp=85065790614&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85065790614&partnerID=8YFLogxK

U2 - 10.1038/s41586-019-1128-0

DO - 10.1038/s41586-019-1128-0

M3 - Letter

VL - 569

SP - 404

EP - 408

JO - Nature

JF - Nature

SN - 0028-0836

IS - 7756

ER -